HP Announces Gen8 Servers – Focus On Opex And Improving SLAs Sets A High Bar For Competitors

On Monday, February 13, HP announced its next turn of the great wheel for servers with the announcement of its Gen8 family of servers. Interestingly, since the announcement was ahead of Intel’s official announcement of the supporting E5 server CPUs, HP had absolutely nothing to say about the CPUs or performance of these systems. But even if the CPU information had been available, it would have been a sideshow to the main thrust of the Gen8 launch — improving the overall TCO (particularly Opex) of servers by making them more automated, more manageable, and easier to remediate when there is a problem, along with enhancements to storage, data center infrastructure management (DCIM) capabilities, and a fundamental change in the way that services and support are delivered.

With a little more granularity, the major components of the Gen8 server technology announcement included:

  • Onboard Automation – A suite of capabilities and tools that provide improved agentless local intelligence to allow quicker and lower labor cost provisioning, including faster boot cycles, “one click” firmware updates of single or multiple systems, intelligent and greatly improved boot-time diagnostics, and run-time diagnostics. This is apparently implemented by more powerful onboard management controllers and pre-provisioning a lot of software on built-in flash memory, which is used by the onboard controller. HP claims that the combination of these tools can increase operator productivity by up to 65%. One of the eye-catching features is an iPhone app that will scan a code printed on the server and go back through the Insight Management Environment stack and trigger the appropriate script to provision the server.[i]Possibly a bit of a gimmick, but a cool-looking one.
Read more

Verne Global And Colt Technology Show A Zero Carbon Data Center – It’s Real, Running, And Impressive In Iceland

Data centers, like any other aspect of real estate, follow the age-old adage of “location, location, location,” and if you want to build one that is really efficient in terms of energy consumption as well as possessing all the basics of reliability, you have to be really picky about ambient temperatures, power availability and, if your business is hosting for others rather than just needing one for yourself, potential expansion. If you want to achieve a seeming impossibility – a zero carbon footprint to satisfy increasingly draconian regulatory pressures – you need to be even pickier. In the end, what you need is:

  • Low ambient temperature to reduce your power requirements for cooling.
  • Someplace where you can get cheap “green” energy, and lots of it.
  • A location with adequate network connectivity, both in terms of latency as well as bandwidth, for global business.
  • A cooperative regulatory environment in a politically stable venue.
Read more

Pushing The Envelope - SeaMicro Introduces Low-Power Xeon Servers

In late 2010 I noted that startup SeaMicro had introduced an ultra-dense server using Intel Atom chips in an innovative fabric-based architecture that allowed them to factor out much of the power overhead from a large multi-CPU server ( http://blogs.forrester.com/richard_fichera/10-09-21-little_servers_big_applications_intel_developer_forum). Along with many observers, I noted that the original SeaMicro server was well-suited to many light-weight edge processing tasks, but that the system would not support more traditional compute-intensive tasks due to the performance of the Atom core. I was, however, quite taken with the basic architecture, which uses a proprietary high-speed (1.28 Tb/s) 3D mesh interconnect to allow the CPU cores to share network, BIOS and disk resources that are normally replicated on a per-server in conventional designs, with commensurate reductions in power and an increase in density.

Read more

2011 Retrospective – The Best And The Worst Of The Technology World

OK, it’s time to stretch the 2012 writing muscles, and what better way to do it than with the time honored “retrospective” format. But rather than try and itemize all the news and come up with a list of maybe a dozen or more interesting things, I decided instead to pick the best and the worst – events and developments that show the amazing range of the technology business, its potentials and its daily frustrations. So, drum roll, please. My personal nomination for the best and worst of the year (along with a special extra bonus category) are:

The Best – IBM Watson stomps the world’s best human players in Jeopardy. In early 2011, IBM put its latest deep computing project, Watson, up against some of the best players in the world in a game of Jeopardy. Watson, consisting of hundreds of IBM Power CPUs, gazillions of bytes of memory and storage, and arguably the most sophisticated rules engine and natural language recognition capability ever developed, won hands down. If you haven’t seen the videos of this event, you should – seeing the IBM system fluidly answer very tricky questions is amazing. There is no sense that it is parsing the question and then sorting through 200 – 300 million pages of data per second in the background as it assembles its answers. This is truly the computer industry at its best. IBM lived up to its brand image as the oldest and strongest technology company and showed us a potential for integrating computers into untapped new potential solutions. Since the Jeopardy event, IBM has been working on commercializing Watson with an eye toward delivering domain-specific expert advisors. I recently listened to a presentation by a doctor participating in the trials of a Watson medical assistant, and the results were startling in terms of the potential to assist medical professionals in diagnostic procedures.

Read more

HP Expands Its x86 Options With Mission-Critical Program – Defense And Offense Combined

Today HP announced a new set of technology programs and future products designed to move x86 server technology for both Windows and Linux more fully into the realm of truly mission-critical computing. My interpretation of these moves is that it is both a combined defensive and pro-active offensive action on HP’s part that will both protect them as their Itanium/HP-UX portfolio slowly declines as well as offer attractive and potentially unique options for both current and future customers who want to deploy increasingly critical services on x86 platforms.

What’s Coming?

Bearing in mind that the earliest of these elements will not be in place until approximately mid-2012, the key elements that HP is currently disclosing are:

ServiceGuard for Linux – This is a big win for Linux users on HP, and removes a major operational and architectural hurdle for HP-UX migrations. ServiceGuard is a highly regarded clustering and HA facility on HP-UX, and includes many features for local and geographically distributed HA. The lack of ServiceGuard is often cited as a risk in HP-UX migrations. The availability of ServiceGuard by mid-2012 will remove yet another barrier to smooth migration from HP-UX to Linux, and will help make sure that HP retains the business as it migrates from HP-UX.

Analysis engine for x86 – Analysis engine is internal software that provides system diagnostics, predictive failure analysis and self-repair on HP-UX systems. With an uncommitted delivery date, HP will port this to selected x86 servers. My guess is that since the analysis engine probably requires some level of hardware assist, the analysis engine will be paired with the next item on the list…

Read more

AMD Releases Interlagos And Valencia – Bulldozers In The Cloud

This week AMD finally released their AMD 6200 and 4200 series CPUs. These are the long-awaited server-oriented Interlagos and Valencia CPUs, based on their new “Bulldozer” core, offering up to 16 x86 cores in a single socket. The announcement was targeted at (drum roll, one guess per customer only) … “The Cloud.” AMD appears to be positioning its new architectures as the platform of choice for cloud-oriented workloads, focusing on highly threaded throughput oriented benchmarks that take full advantage of its high core count and unique floating point architecture, along with what look like excellent throughput per Watt metrics.

At the same time it is pushing the now seemingly mandatory “cloud” message, AMD is not ignoring the meat-and-potatoes enterprise workloads that have been the mainstay of server CPUs sales –virtualization, database, and HPC, where the combination of many cores, excellent memory bandwidth and large memory configurations should yield excellent results. In its competitive comparisons, AMD targets Intel’s 5640 CPU, which it claims represents Intel’s most widely used Xeon CPU, and shows very favorable comparisons in regards to performance, price and power consumption. Among the features that AMD cites as contributing to these results are:

  • Advanced power and thermal management, including the ability to power off inactive cores contributing to an idle power of less than 4.4W per core. Interlagos offers a unique capability called TDP, which allows I&O groups to set the total power threshold of the CPU in 1W increments to allow fine-grained tailoring of power in the server racks.
  • Turbo CORE, which allows boosting the clock speed of cores by up to 1 GHz for half the cores or 500 MHz for all the cores, depending on workload.
Read more

HP Embraces Calxeda ARM Architecture With "Project Moonshot" - New Hyperscale Business Unit Program

What's the Big Deal?

Emerging ARM server Calxeda has been hinting for some time that they had a significant partnership announcement in the works, and while we didn’t necessarily not believe them, we hear a lot of claims from startups telling us to “stay tuned” for something big. Sometimes they pan out, sometimes they simply go away. But this morning Calxeda surpassed our expectations by unveiling just one major systems partner – but it just happens to be Hewlett Packard, which dominates the WW market for x86 servers.

At its core (unintended but not bad pun), the HP Hyperscale business unit Project Moonshot and Calxeda’s server technology are about improving the efficiency of web and cloud workloads, and promises improvements in excess of 90% in power efficiency and similar improvements in physical density compared with current x86 solutions. As I noted in my first post on ARM servers and other documents, even if these estimates turn out to be exaggerated, there is still a generous window within which to do much, much, better than current technologies. And workloads (such as memcache, Hadoop, static web servers) will be selected for their fit to this new platform, so the workloads that run on these new platforms will potentially come close to the cases quoted by HP and Calxeda.

The Program And New HP Business Unit

Read more

UNIX – Dead Or Alive?

There has been a lot of ill-considered press coverage about the “death” of UNIX and coverage of the wholesale migration of UNIX workloads to LINUX, some of which (the latter, not the former) I have contributed to. But to set the record straight, the extinction of UNIX is not going to happen in our lifetime.

While UNIX revenues are not growing at any major clip, it appears as if they have actually had a slight uptick over the past year, probably due to a surge by IBM, and seem to be nicely stuck around the $18 - 20B level annual range. But what is important is the “why,” not the exact dollar figure.

UNIX on proprietary RISC architectures will stay around for several reasons that primarily revolve around their being the only close alternative to mainframes in regards to specific high-end operational characteristics:

  • Performance – If you need the biggest single-system SMP OS image, UNIX is still the only realistic commercial alternative other than mainframes.
  • Isolated bulletproof partitionability – If you want to run workload on dynamically scalable and electrically isolated partitions with the option to move workloads between them while running, then UNIX is your answer.
  • Near-ultimate availability – If you are looking for the highest levels of reliability and availability ex mainframes and custom FT systems, UNIX is the answer. It still possesses slight availability advantages, especially if you factor in the more robust online maintenance capabilities of the leading UNIX OS variants.
Read more

Dell World – New Image. New Company?

I just spent several days at Dell World, and came away with the impression of a company that is really trying to change its image. Old Dell was boxes, discounts and low cost supply chain. New Dell is applications, solution, cloud (now there’s a surprise!) and investments in software and integration. OK, good image, but what’s the reality? All in all, I think they are telling the truth about their intentions, and their investments continue to be aligned with these intentions.

As I wrote about a year ago, Dell seems to be intent on climbing up the enterprise food chain. It’s investment in several major acquisitions, including Perot Systems for services and a string of advanced storage, network and virtual infrastructure solution providers has kept the momentum going, and the products have been following to market. At the same time I see solid signs of continued investment in underlying hardware, and their status as he #1 x86 server vendor in N. America and #2 World-Wide remains an indication of their ongoing success in their traditional niches. While Dell is not a household name in vertical solutions, they have competent offerings in health care, education and trading, and several of the initiatives I mentioned last year are definitely further along and more mature, including continued refinement of their VIS offerings and deep integration of their much-improved DRAC systems management software into mainstream management consoles from VMware and Microsoft.

Read more

HP And Cisco Bury The Hatchet To Accommodate Customers – Everyone Wins?

In a surprising move, HP and Cisco announced that HP will be reselling a custom-developed Cisco Nexus switch, the “Cisco Nexus B22 Fabric Extender for HP,” commonly called a FEX in Cisco speak. What is surprising about this is that the FEX is a key component of Cisco’s Nexus switch technology as well as an integral component of Cisco’s UCS server product, the introduction of which has pitted the two companies in direct and bitter competition in the heart of HP’s previously sacrosanct server segment. Combined with HP’s increasing focus on networking, the companies have not been the best of buds for the past couple of years. Accordingly, this announcement really makes us sit up and take notice.

So what drove this seeming rapprochement? The coined word “coopetition” lacks the flavor of the German “Realpolitik,” but the essence is the same – both sides profit from accommodating a real demand from customers for Cisco network technology in HP BladeSystem servers. And like the best of deals, both sides walk away thinking that they got the best of the other. HP answers the demands of what is probably a sizable fraction of their customer base for better interoperability with Cisco Nexus-based networks, and in doing so expects to head off customer defections to Cisco UCS servers. Cisco gets both money (the B22 starts at around $10,000 per module and most HP BladeSystem customers who use it will probably buy at least two per enclosure, so making a rough guess at OEM pricing, Cisco is going to make as much as $8,000 to $10,000 per chassis from HP BladeSystems that use the B22) from the sale of the Cisco-branded modules as well as exposure of Cisco technology to HP customers, with the hope that they will consider UCS for future requirements.

Read more