AMD Acquires SeaMicro — Big Bet On Architectural Shift For Servers

[For some reason this has been unpublished since April — so here it is well after AMD announced its next spin of the SeaMicro product.]

At its recent financial analyst day, AMD indicated that it intended to differentiate itself by creating products that were advantaged in niche markets, with specific mention, among other segments, of servers, and to generally shake up the trench warfare that has had it on the losing side of its lifelong battle with Intel (my interpretation, not AMD management’s words). Today, at least for the server side of the business, it made a move that can potentially offer it visibility and differentiation by acquiring innovative server startup SeaMicro.

SeaMicro has attracted our attention since its appearance (blog post 1, blog post 2) with its innovative architecture that dramatically reduces power and improves density by sharing components like I/O adapters, disks, and even BIOS over a proprietary fabric. The irony here is that SeaMicro came to market with a tight alignment with Intel, who at one point even introduced a special dual-core packaging of its Atom CPU to allow SeaMicro to improve its density and power efficiency. Most recently SeaMicro and Intel announced a new model that featured Xeon CPUs to address the more mainstream segments that were not a part of SeaMicro’s original Atom-based offering.

Read more

Data Center Power And Efficiency – Public Enemy #1 Or The Latest Media Punching Bag?

This week, the New York Times ran a series of articles about data center power use (and abuse) “Power, Pollution and the Internet” (http://nyti.ms/Ojd9BV) and “Data Barns in a Farm Town, Gobbling Power and Flexing Muscle” (http://nyti.ms/RQDb0a). Among the claims made in the articles were that data centers were “only using 6 to 12 % of the energy powering their servers to deliver useful computation. Like a lot of media broadsides, the reality is more complex than the dramatic claims made in these articles. Technically they are correct in claiming that of the electricity going to a server, only a very small fraction is used to perform useful work, but this dramatic claim is not a fair representation of the overall efficiency picture. The Times analysis fails to take into consideration that not all of the power in the data center goes to servers, so the claim of 6% efficiency of the servers is not representative of the real operational efficiency of the complete data center.

On the other hand, while I think the Times chooses drama over even-keeled reporting, the actual picture for even a well-run data center is not as good as its proponents would claim. Consider:

  • A new data center with a PUE of 1.2 (very efficient), with 83% of the power going to IT workloads.
  • Then assume that 60% of the remaining power goes to servers (storage and network get the rest), for a net of almost 50% of the power going into servers. If the servers are running at an average utilization of 10%, then only 10% of 50%, or 5% of the power is actually going to real IT processing. Of course, the real "IT number" is the server + plus storage + network, so depending on how you account for them, the IT usage could be as high as 38% (.83*.4 + .05).
Read more

SUSEcon2012 — SUSE’s Coming Out Party

Every culture has its coming of age rituals — Confirmation, Bar Mitzvah, being hunted by tribal elders, surviving in the wilderness, driving at high speed while texting — all of which mark the progress from childhood to adulthood. In the high-tech world, one of the rituals marking the maturation of a company is the user group. When a company has a strategy it wants to communicate, a critical mass of customers, and prospects bright enough that it wants to highlight them rather than obscure them, it is time for a user group meeting.

This year, having passed a year since the acquisition of Novell by AttachMate and its subsequent instantiation as a standalone division, as well as being its 20th anniversary, SUSE had its first user group meeting. All in all, the portents were good, and SUSE got its core messages across to an audience of about 500 of its users as well as a cadre of the more sophisticated (IMHO) industry analysts.

Among My Key Takeaways:

  • SUSE is a stable company with rational management — With profitable revenues of over $200M and a publicly stated plan to hit $234 for the next fiscal year, SUSE is a reasonably sized company (technically a division of $1.3B Attachmate, but it looks and acts like an independent company), with growth rates that look to be a couple of points higher than its segment.
  • SUSE’s management has done an excellent job of focusing the company — SUSE, acknowledging its size disadvantage over competitor Red Hat, has chosen to focus heavily on enterprise Linux, publicly disavowing desktop and mobile device directions. SUSE’s claim is that their market share in the core enterprise segment is larger than their overall market share compared to Red Hat. This is a hard number to even begin to tweeze out, but it feels like a reasonable claim.
Read more

Microsoft Announces Windows Server 2012

The Event

On Tuesday, September 4, Microsoft made the official announcement of Windows Server 2012, ending what has seemed like an interminable sequence of rumors, Beta releases, and endless speculation about this successor to Windows Server 2008.

So, is it worth the wait and does it live up to its hype? All omens point to a resounding “YES.”

Make no mistake, this is a really major restructuring of the OS, and a major step-function in capabilities aligned with several major strategic trends for both Microsoft and the rest of the industry. While Microsoft’s high level message is centered on the cloud, and on the Windows Server 2012 features that make it a productive platform upon which both enterprises and service providers can build a cost-effective cloud, its features will be immensely valuable to a wide range of businesses.

What It Does

The reviewers guide for Windows Server 2012 is over 220 pages long, and the OS has at least 100 features that are worth noting, so a real exploration of the features of this OS is way beyond what I can do here. Nonetheless, we can look at several buckets of technology to get an understanding of the general capabilities. Also important to note is that while Microsoft has positioned this as a very cloud-friendly OS, almost all of these cloud-related features are also very useful to an enterprise IT environment.

  • New file system — Included in WS2012 is ReFS, a new file system designed to survive failures that would bring down or corrupt the previous NTFS file system (which is still available). Combined with improvements in cluster management and failover, this is a capability that will play across the entire user spectrum.
Read more

HP Vs. Oracle – Despite Verdict In Favor Of HP, The End Is Not Yet In Sight

This week the California courts handed down a nice present for HP — a verdict confirming that Oracle was required to continue to deliver its software on HP’s Itanium-based Integrity servers. This was a major victory for HP, on the face of it giving them the prize they sought — continued availability of Oracle’s eponymous database on their high-end systems.

However, HP’s customers should not immediately assume that everything has returned to a “status quo ante.” Once Humpty Dumpty has fallen off the wall it is very difficult to put the pieces together again. As I see it, there are still three major elephants in the room that HP users must acknowledge before they make any decisions:

  • Oracle will appeal, and there is no guarantee of the outcome. The verdict could be upheld or it could be reversed. If it is upheld, then that represents a further delay in the start date from which Oracle will be measured for its compliance with the court ordered development. Oracle will also continue to press its counterclaims against HP, but those do not directly relate to the continued development or Oracle software on Itanium.
  • Itanium is still nearing the end of its road map. A reasonable interpretation of the road map tea leaves that have been exposed puts the final Itanium release at about 2015 unless Intel decides to artificially split Kittson into two separate releases. Integrity customers must take this into account as they buy into the architecture in the last few years of Itanium’s life, although HP can be depended on to offer high-quality support for a decade after the last Itanium CPU rolls off Intel’s fab lines. HP has declared its intention to produce Integrity-level x86 systems, but OS support intentions are currently stated as Linux and Windows, not HP-UX.
Read more

First ARM Benchmarks – The Race Is On

This week, sandwiched between the annual Structure Big Data conference and the International Supercomputing show in Hamburg, Germany, ARM startup and HP partner Calxeda also found time to release the first well-documented x86 versus ARM benchmarks. The results, shown below, are very positive — while there are some caveats that we need to note, the first generation ARM SOCs seem to deliver on their basic promise of much better performance per Watt.

The benchmark, which compares anew ARM SOC from Calxeda to a Sandy Bridge (not Ivy Bridge) low-end Xeon server with the same number of cores, shows that the Xeon CPU, while delivering more performance, has a very large deficit in workload per Watt, which is one of the key value propositions of the ARM community. Benchmark details*:

Interpreting The Benchmark

First of all, this is a single benchmark, and its relevance is limited to its domain — lightweight web serving on a small web server with 1 Gb network. We cannot interpolate results based on a faster network configuration (although my guess is that this configuration is bottlenecked by the network, and a faster Xeon would not make much difference), nor can we extend the interpretation to other workloads. But within the benchmark domain, this early comparison tells us some important things:

  • Even with the current V7 32-bit architecture, the ARM CPU does indeed deliver impressive power efficiency.
  • Absolute performance, especially considering the huge difference in clock speed, is higher than most of us expected.
  • As a basic proof point, this benchmark succeeds as a proof of concept — AMR servers are indeed in the ballpark versus their initial promises.
Read more

DCIM — Updates And Trends

Only a few months since I authored Forrester’s "Market Overview: Data Center Infrastructure Management Solutions," significant changes merit some additional commentary.

Vendor Drama

The major vendor drama of the “season” is the continued evolution of Schneider and Emerson’s DCIM product rollout. Since Schneider’s worldwide analyst conference in Paris last week, we now have pretty good visibility into both major vendors' strategy and products. In a nutshell, we have two very large players, both with large installed bases of data center customers, and both selling a vision of an integrated modular DCIM framework. More importantly it appears that both vendors can deliver on this promise. That is the good news. The bad news is that their offerings are highly overlapped, and for most potential customers the choice will be a difficult one. My working theory is that whoever has the largest footprint of equipment will have an advantage, and that a lot depends on the relative execution of their field marketing and sales organizations as both companies rush to turn 1000s of salespeople and partners loose on the world with these products. This will be a classic market share play, with the smart strategy being to sacrifice margin for market share, since DCIM solutions have a high probability of pulling through services, and usually involve some annuity revenue stream from support and update fees.

How Big Is The Market?

Read more

HP Rolls Out BladeSystem Upgrades – Significant Improvements Aim To Fend Off IBM And Cisco

Overview

Earlier this week at its Discover customer event, HP announced a significant set of improvements to its already successful c-Class BladeSystem product line, which, despite continuing competitive pressure from IBM and the entry of Cisco into the market three years ago, still commands approximately 50% of the blade market. The significant components of this announcement fall into four major functional buckets – improved hardware, simplified and expanded storage features, new interconnects and I/O options, and serviceability enhancements. Among the highlights are:

  • Direct connection of HP 3PAR storage – One of the major drawbacks for block-mode storage with blades has always been the cost of the SAN to connect it to the blade enclosure. With the ability to connect an HP 3PAR storage array directly to the c-Class enclosure without any SAN components, HP has reduced both the cost and the complexity of storage for a wide class of applications that have storage requirements within the scope of a single storage array.
  • New blades – With this announcement, HP fills in the gaps in their blade portfolio, announcing a new Intel Xeon EN based BL-420 for entry requirements, an upgrade to the BL-465 to support the latest AMD 16-core Interlagos CPU, and the BL-660, a new single-width Xeon E5 based 4-socket blade. In addition, HP has expanded the capacity of the sidecar storage blade to 1.5 TB, enabling an 8-server and 12 TB + chassis configuration.
Read more

Dell Joins The ARMs Race, Announces ARM-Based 'Copper' Server

Earlier this week Dell joined arch-competitor HP in endorsing ARM as a potential platform for scale-out workloads by announcing “Copper,” an ARM-based version of its PowerEdge-C dense server product line. Dell’s announcement and positioning, while a little less high-profile than HP’s February announcement, is intended to serve the same purpose — to enable an ARM ecosystem by providing a platform for exploring ARM workloads and to gain a visible presence in the event that it begins to take off.

Dell’s platform is based on a four-core Marvell ARM V7 SOC implementation, which it claims is somewhat higher performance than the Calxeda part, although drawing more power, at 15W per node (including RAM and local disk). The server uses the PowerEdge-C form factor of 12 vertically mounted server modules in a 3U enclosure, each with four server nodes on them for a total of 48 servers/192 cores in a 3U enclosure. In a departure from other PowerEdge-C products, the Copper server has integrated L2 network connectivity spanning all servers, so that the unit will be able to serve as a low-cost test bed for clustered applications without external switches.

Dell is offering this server to selected customers, not as a GA product, along with open source versions of the LAMP stack, Crowbar, and Hadoop. Currently Cannonical is supplying Ubuntu for ARM servers, and Dell is actively working with other partners. Dell expects to see OpenStack available for demos in May, and there is an active Fedora project underway as well.

Read more

ARM Arrives – Calxeda Shows Real Hardware Running Linux

I said last year that this would happen sometime in the first half of this year, but for some reason my colleagues and clients have kept asking me exactly when we would see a real ARM server running a real OS. How about now?

 To copy from Calxeda’s most recent blog post:

“This week, Calxeda is showing a live Calxeda cluster running Ubuntu 12.04 LTS on real EnergyCore hardware at the Ubuntu Developer and Cloud Summit events in Oakland, CA. … This is the real deal; quad-core, w/ 4MB cache, secure management engine, and Calxeda’s fabric all up and running.”

This is a significant milestone for many reasons. It proves that Calxeda can indeed deliver a working server based on its scalable fabric architecture, although having HP signing up as a partner meant that this was essentially a non-issue, but still, proof is good. It also establishes that at least one Linux distribution provider, in this case Ubuntu, is willing to provide a real supported distribution. My guess is that Red Hat and Centos will jump on the bus fairly soon as well.

Most importantly, we can get on with the important work of characterizing real benchmarks on real systems with real OS support. HP’s discovery centers will certainly play a part in this process as well, and I am willing to bet that by the end of the summer we will have some compelling data on whether the ARM server will deliver on its performance and energy efficiency promises. It’s not a slam dunk guaranteed win – Intel has been steadily ratcheting up its energy efficiency, and the latest generation of x86 server from HP, IBM, Dell, and others show promise of much better throughput per watt than their predecessors. Add to that the demonstration of a Xeon-based system by Sea Micro (ironically now owned by AMD) that delivered Xeon CPUs at a 10 W per CPU power overhead, an unheard of efficiency.

Read more