A Ray of Hope for HP NonStop Users – HP Announces x86 NonStop Plans

Lost in the excess of press and collective angst over the fate of HP’s HP-UX servers and the widely-accepted premise that Itanium is nearing the end of its less than stellar run has been the fate of HP’s NonStop users. These customers, some dating back to the original Tandem customer roster, almost universally use HP NonStop systems as mission-critical hubs for their business in industries as diverse as securities trading, public safety and retail sales. NonStop is far more difficult to engineer out of an organization than is HP-UX since there are few viable alternatives at any reasonable cost to replace the combination of scalable processing power and fault-tolerance that the NonStop environment provides.

NonStop users can now breathe collective sigh of relief - on November 4 HP announced that it was undertaking to migrate NonStop to an x86 system platform. Despite the lack of any specifics on system details, timing or pretty much anything else, I think that NonStop users can take this to the bank, figuratively and literally, for a couple of reasons:

  • HP has a pretty good track record of actually delivering major initiatives that it commits to. Their major stumbles in dealing with their Itanium-based HP-UX program has been in not communicating rather than missing commitments. Technically, given another cycle of server CPUs and their collective expertise in systems design, including the already undeway high-end x86 systems programs, there is little doubt that HP can deliver a platform suitable for supporting NonStop.
Read more

Categories:

HP Rolls Out HP OneView – Systems Management Done Right

In The Beginning

I was perusing one of my favorite trade pubs, The Register, and noticed an article about the new HP OneView systems management, which reminded me that I was going to write a blog on it at some point. Further perusing the article gave me even more incentive to get down to penning this post, since I really think that this is one of the rare occasions where the usually excellent staff of “El Reg” allowed themselves to get carried away with their enviable witticisms and just plain missed the point.

The Register article seemed to dismiss HP OneView as some sort of cosmetic trick, with references to things like “dressing up software in easy to use user interfaces”. My perception is completely the opposite — dressing up software in easy to use interfaces is exactly what is needed in a world drowning in IT complexity, and I believe that HP OneView is a significant development in systems management tools, both useful to HP customers today and probably setting a significant bar for competitive offerings as well.

What It Is                                                                                                   

Read more

Intel Lays Out Future Data Center Strategy - Serious Focus on Emerging Opportunities

Yesterday Intel had a major press and analyst event in San Francisco to talk about their vision for the future of the data center, anchored on what has become in many eyes the virtuous cycle of future infrastructure demand – mobile devices and “the Internet of things” driving cloud resource consumption, which in turn spews out big data which spawns storage and the requirement for yet more computing to analyze it. As usual with these kinds of events from Intel, it was long on serious vision, and strong on strategic positioning but a bit parsimonious on actual future product information with a couple of interesting exceptions.

Content and Core Topics:

No major surprises on the underlying demand-side drivers. The the proliferation of mobile device, the impending Internet of Things and the mountains of big data that they generate will combine to continue to increase demand for cloud-resident infrastructure, particularly servers and storage, both of which present Intel with an opportunity to sell semiconductors. Needless to say, Intel laced their presentations with frequent reminders about who was the king of semiconductor manufacturingJ

Read more

Systems of Engagement vs Systems of Reference – Core Concept for Infrastructure Architecture

My Forrester colleagues Ted Schadler and John McCarthy have written about the differences between Systems of Reference (SoR) and Systems of Engagement (SoE) in the customer-facing systems and mobility, but after further conversations with some very smart people at IBM, I think there are also important reasons for infrastructure architects to understand this dichotomy. Scalable and flexible systems of engagement, engagement, built with the latest in dynamic web technology and the back-end systems of record, highly stateful usually transactional systems designed to keep track of the “true” state of corporate assets are very different animals from an infrastructure standpoint in two fundamental areas:

Suitability to cloud (private or public) deployment – SoE environments, by their nature, are generally constructed using horizontally scalable technologies, generally based on some level of standards including web standards, Linux or Windows OS, and some scalalable middleware that hides the messy details of horizontally scaling a complex application. In addition, the workloads are generally highly parallel, with each individual interaction being of low value. This characteristic leads to very different demands on the necessity for consistency and resiliency.

Read more

AMD Quietly Rolls Out hUMA – Potential Game-Changer for Parallel Computing

Background  High Performance Attached Processors Handicapped By Architecture

The application of high-performance accelerators, notably GPUs, GPGPUs (APUs in AMD terminology) to a variety of computing problems has blossomed over the last decade, resulting in ever more affordable compute power for both horizon and mundane problems, along with growing revenue streams for a growing industry ecosystem. Adding heat to an already active mix, Intel’s Xeon Phi accelerators, the most recent addition to the GPU ecosystem, have the potential to speed adoption even further due to hoped-for synergies generated by the immense universe of x86 code that could potentially run on the Xeon Phi cores.

However, despite any potential synergies, GPUs (I will use this term generically to refer to all forms of these attached accelerators as they currently exist in the market) suffer from a fundamental architectural problem — they are very distant, in terms of latency, from the main scalar system memory and are not part of the coherent memory domain. This in turn has major impacts on performance, cost, design of the GPUs, and the structure of the algorithms:

  • Performance — The latency for memory accesses generally dictated by PCIe latencies, which while much improved over previous generations, are a factor of 100 or more longer than latency from coherent cache or local scalar CPU memory. While clever design and programming, such as overlapping and buffering multiple transfers can hide the latency in a series of transfers, it is difficult to hide the latency for an initial block of data. Even AMD’s integrated APUs, in which the GPU elements are on a common die, do not share a common memory space, and explicit transfers are made in and out of the APU memory.
Read more

Is IBM Selling Its Server Business To Lenovo?

 

The industry is abuzz with speculation that IBM will sell its x86 server business to Lenovo. As usual, neither party is talking publicly, but at this point I’d give it a better than even chance, since usually these kind of rumors tend to be based on leaks of real discussions as opposed to being completely delusional fantasies. Usually.

So the obvious question then becomes “Huh?”, or, slightly more eloquently stated, “Why would they do something like that?”. Aside from the possibility that this might all be fantasy, two explanations come to mind:

1. IBM is crazy.

2. IBM is not crazy.

Of the two explanations, I’ll have to lean toward the latter, although we might be dealing with a bit of the “Hey, I’m the new CEO and I’m going to do something really dramatic today” syndrome. IBM sold its PC business to Lenovo to the tune of popular disbelief and dire predictions, and it's doing very well today because it transferred its investments and focus to higher margin business, like servers and services. Lenovo makes low-end servers today that it bootstrapped with IBM licensed technology, and IBM is finding it very hard to compete with Lenovo and other low-cost providers. Maybe the margins on its commodity server business have sunk below some critical internal benchmark for return on investment, and it believes that it can get a better return on its money elsewhere.

Read more

IBM Makes Major Commitment to Flash

 

Wisdom from the Past

In his 1956 dystopian sci-fi novel “The City and the Stars”, Arthur C. Clarke puts forth the fundamental design tenet for making eternal machines, “A machine shall have no moving parts”. To someone from the 1950s current computers would appear to come close to that ideal – the CPUs and memory perform silent magic and can, with some ingenuity, be passively cooled, and invisible electronic signals carry information in and out of them to networks and … oops, to rotating disks, still with us after more than five decades[i]. But, as we all know, salvation has appeared on the horizon in the form of solid-state storage, so called flash storage (actually an idea of several decades standing as well, just not affordable until recently).

The initial substitution of flash for conventional storage yields immediate gratification in the form of lower power, maybe lower cost if used effectively, and higher performance, but the ripple effect benefits of flash can be even more pervasive. However, the implementation of the major architectural changes engendered across the whole IT stack by the use of flash is a difficult conceptual challenge for users and largely addressed only piecemeal by most vendors. Enter IBM and its Flashahead initiative.

What is Happening?

On Friday, April 11, IBM announced a major initiative, to the tune of a spending commitment of $1B, to accelerate the use of flash technology by means of three major programs:

·        Fundamental flash R&D

·        New storage products built on flash-only memory technology

Read more

HP Launches First Project Moonshot Server – The Shape of Things to Come?

 

Overview - Moonshot Takes Off

HP today announced the Moonshot 1500 server, their first official volume product in the Project Moonshot server product family (the initial Redstone, a Calxeda ARM-based server, was only available in limited quantities as a development system), and it represents both a significant product today and a major stake in the ground for future products, both from HP and eventually from competitors. It’s initial attractions – an extreme density low power x86 server platform for a variety of low-to-midrange CPU workloads – hides the fact that it is probably a blueprint for both a family of future products from HP as well as similar products from other vendors.

Geek Stuff – What was Announced

The Moonshot 1500 is a 4.3U enclosure that can contain up to 45 plug-in server cartridges, each one a complete server node with a dual-core Intel Atom 1200 CPU, up to 8 GB of memory and a single disk or SSD device, up to 1 TB, and the servers share common power supplies and cooling. But beyond the density, the real attraction of the MS1500 is its scalable fabric and CPU-agnostic architecture. Embedded in the chassis are multiple fabrics for storage, management and network giving the MS1500 (my acronym, not an official HP label) some of the advantages of a blade server without the advanced management capabilities. At initial shipment, only the network and management fabric will be enabled by the system firmware, with each chassis having up two Gb Ethernet switches (technically they can be configured with one, but nobody will do so), allowing the 45 servers to share uplinks to the enterprise network.

Read more

Windows 8 & Lenovo – The Good, the Bad and the Bugly

I recently bought myself a Lenovo ThinkPad Tablet 2 running Windows 8 because I want a tablet device that can really run Windows and PowerPoint when I need them, and I have found all the iPad Office solutions to be lacking in some fashion. When I saw the new Lenovo ThinkPad Tablet 2, it was love at first byte.

Like in all relationships, some of the new has worn off, and since it’s “Internet time”, it has only taken a couple of weeks as opposed to years to see my partner in a more realistic light.

So, here is my list of the good and the bad (architecturally, structurally) and bugly (things that can probably be fixed).

The Good – Excellent Hardware, Fluid and Attractive Interface

There are many good things to say about this combination:

  • It’s the lightest Windows device I have ever owned, and its general performance and usability is light years ahead of a horrible Netbook I bought for one of my sons about two years ago.
Read more

HP Shows its Next Generation Blade and Converged Infrastructure – No Revolution, but Strong Evolution

With the next major spin of Intel server CPUs due later this year, HP’s customers have been waiting for HP’s next iteration of its core c-Class BladeSystem, which has been on the market for almost 7 years without any major changes to its basic architecture. IBM made a major enhancement to its BladeCenter architecture, replacing it with the new Pure Systems, and Cisco’s offering is new enough that it should last for at least another three years without a major architectural refresh, leaving HP customers to wonder when HP was going to introduce its next blade enclosure, and whether it would be compatible with current products.

At their partner conference this week, HP announced a range of enhancements to its blade product line that on combination represent a strong evolution of the current product while maintaining compatibility with current investments. This positioning is similar to what IBM did with its BladeCenter to BladeCenter-H upgrade, preserving current customer investment and extending the life of the current server and peripheral modules for several more years.

Tech Stuff – What Was Announced

Among the goodies announced on February 19 was an assortment of performance and functionality enhancements, including:

  • Platinum enclosure — The centerpiece of the announcement was the new c7000 Platinum enclosure, which boosts the speed of the midplane signal paths from 10 GHz to 14GHz, for an increase of 40% in raw bandwidth of the critical midplane, across which all of the enclosure I/O travels. In addition to the increased bandwidth midplane, the new enclosure incorporates location aware sensors and also doubles the available storage bandwidth.
Read more