HP Shows its Next Generation Blade and Converged Infrastructure – No Revolution, but Strong Evolution

With the next major spin of Intel server CPUs due later this year, HP’s customers have been waiting for HP’s next iteration of its core c-Class BladeSystem, which has been on the market for almost 7 years without any major changes to its basic architecture. IBM made a major enhancement to its BladeCenter architecture, replacing it with the new Pure Systems, and Cisco’s offering is new enough that it should last for at least another three years without a major architectural refresh, leaving HP customers to wonder when HP was going to introduce its next blade enclosure, and whether it would be compatible with current products.

At their partner conference this week, HP announced a range of enhancements to its blade product line that on combination represent a strong evolution of the current product while maintaining compatibility with current investments. This positioning is similar to what IBM did with its BladeCenter to BladeCenter-H upgrade, preserving current customer investment and extending the life of the current server and peripheral modules for several more years.

Tech Stuff – What Was Announced

Among the goodies announced on February 19 was an assortment of performance and functionality enhancements, including:

  • Platinum enclosure — The centerpiece of the announcement was the new c7000 Platinum enclosure, which boosts the speed of the midplane signal paths from 10 GHz to 14GHz, for an increase of 40% in raw bandwidth of the critical midplane, across which all of the enclosure I/O travels. In addition to the increased bandwidth midplane, the new enclosure incorporates location aware sensors and also doubles the available storage bandwidth.
Read more

IBM Embraces Emerson for DCIM – Major Change in DCIM Market Dynamics

Emerson Network Power today announced that it is entering into a significant partnership with IBM to both integrate Emerson’s new Trellis DCIM suite into IBM’s ITSM products as well as to jointly sell Trellis to IBM customers. This partnership has the potential to reshape the DCIM market segment for several reasons:

  • Connection to enterprise IT — Emerson has sold a lot of chillers, UPS and PDU equipment and has tremendous cachet with facilities types, but they don’t have a lot of people who know how to talk IT. IBM has these people in spades.
  • IBM can use a DCIM offering  — IBM, despite being a huge player in the IT infrastructure and data center space, does not have a DCIM product. Its Maximo product seems to be more of a dressed up asset management product, and this partnership is an acknowledgement of the fact that to build a full-fledged DCIM product would have been both expensive and time-consuming.
  • IBM adds sales bandwidth — My belief is that the development of the DCIM market has been delivery bandwidth constrained. Market leaders Nlyte, Emerson and Schneider do not have enough people to address the emerging total demand, and the host of smaller players are even further behind. IBM has the potential to massively multiply Emerson’s ability to deliver to the market.
Read more

On the Road with DCIM – Affirmation & Embellishment of Our Underlying Thesis

I was part of a Forrester Team that recently completed a multi-country rollout tour with Emerson Network Power as they formally released their Trellis DCIM product, a comprehensive DCIM environment many years in the building. One of the key takeaways was both an affirmation of our fundamental assertions about DCIM, plus hints about its popularity and attraction for potential customers that in some ways expand on the original value proposition we envisioned. Our audiences were in total approximately 500 selected data center users, most current Emerson customers of some sort, plus various partners.

The audiences uniformly supported the fundamental thesis around DCIM – there exists a strong underlying demand for integrated DCIM products, with a strong proximal emphasis on optimizing power and cooling to save opex and avoid the major disruption and capex of new data center capacity. Additionally, the composition of the audiences supported our contention that these tools would have multiple stakeholders in the enterprise. As expected, the groups were heavy with core Infrastructure & Operations types – the people who have to plan, provision and operate the data center infrastructure to deliver the services needed for their company’s operations. What was heartening was the strong minority presence of facilities people, ranging from 10% to 30% of the attendees, along with a sprinkling of corporate finance and real-estate executives. Informal conversations with a number of these people gave us consistent input that they understood the need, and in some cases were formerly tasked by their executives, to work more closely with the I&O group. All expressed the desire for an integrated tool to help with this.

Read more

Open Compute Project – Rising Relevance And More Stakeholders

Background

Today’s announcements at the Open Compute Project (OCP) 2013 Summit could be considered as tangible markers for the OCP crossing the line into real relevance as an important influence on emerging hyper-scale and cloud computing as well as having a potential bleed-through into the world of enterprise data centers and computing. This is obviously a subjective viewpoint – there is no objective standard for relevance, only post-facto recognition that something was important or not. But in this case I’m going to stick my neck out and predict that OCP will have some influence and will be a sticky presence in the industry for many years.

Even if their specs (which look generally quite good) do not get picked up verbatim, they will act as an influence on major vendors who will, much like the auto industry in the 1970s, get the message that there is a market for economical “low-frills” alternatives.

Major OCP Initiatives

To date, OCP has announced a number of useful hardware specifications, including:

Read more

Intel Makes Its Mark In The HPC Segment With Xeon Phi

Background

With a  couple of months' perspective, I’m pretty convinced that Intel has made a potentially disruptive entry in the market for programmable computational accelerators, often referred to as GPGPUs (General Purpose Graphics Processing Units) in deference to the fact that the market leaders, NVIDIA and AMD, have dominated the segment with parallel computational units derived from high-end GPUs. In late 2012, Intel, referring to the architecture as MIC (Many Independent Cores) introduced the Xeon Phi product, the long-awaited productization of the development project that was known internally (and to the rest of the world as well) as Knight’s Ferry, a MIC coprocessor with up to 62 modified Xeon cores implemented in its latest 22 nm process.

Why Xeon Phi Is Important

Read more

Oracle Delivers On SPARC Promises

Background

When I returned to Forrester in mid-2010, one of the first blog posts I wrote was about Oracle’s new roadmap for SPARC and Solaris, catalyzed by numerous client inquiries and other interactions in which Oracle’s real level of commitment to future SPARC hardware was the topic of discussion. In most cases I could describe the customer mood as skeptical at best, and panicked and committed to migration off of SPARC and Solaris at worst. Nonetheless, after some time spent with Oracle management, I expressed my improved confidence in the new hardware team that Oracle had assembled and their new roadmap for SPARC processors after the successive debacles of the UltraSPARC-5 and Rock processors under Sun’s stewardship.

Two and a half years later, it is obvious that Oracle has delivered on its commitments regarding SPARC and is continuing its investments in SPARC CPU and system design as well as its Solaris OS technology. The latest evolution of SPARC technology, the SPARC T5 and the soon-to-be-announced M5, continue the evolution and design practices set forth by Oracle’s Rick Hetherington in 2010 — incremental evolution of a common set of SPARC cores, differentiation by variation of core count, threads and cache as opposed to fundamental architecture, and a reliable multi-year performance progression of cores and system scalability.

Geek Stuff – New SPARC Hardware

Read more

HP’s Troubles Continue, But Does It Matter?

HP seems to be on a tear, bouncing from litigation with one of its historically strongest partners to multiple CEOs in the last few years, continued layoffs, and a recent massive write-down of its EDS purchase. And, as we learned last week, the circus has not left town. The latest “oops” is an $8.8 billion write-down for its purchase of Autonomy, under the brief and ill-fated leadership of Léo Apotheker, combined with allegations of serious fraud on the part of Autonomy during the acquisition process.

The eventual outcome of this latest fiasco will be fun to watch, with many interesting sideshows along the way, including:

  • Whose fault is it? Can they blame it on Léo, or will it spill over onto Meg Whitman, who was on the board and approved it?
  • Was there really fraud involved?
  • If so, how did HP miss it? What about all the internal and external people involved in due diligence of this acquisition? I’ve been on the inside of attempted acquisitions at HP, and there were always many more people around with the power to say “no” than there were people who were trying to move the company forward with innovative acquisitions, and the most persistent and compulsive of the group were the various finance groups involved. It’s really hard to see how they could have missed a little $5 billion discrepancy in revenues, but that’s just my opinion — I was usually the one trying to get around the finance guys. :)
Read more

HP And Intel Announce Poulson And New Integrity Servers – Great News For A Select Few

On Tuesday November 8, after more than a year of pre-announcement disclosures that eventually left very little to the imagination, Intel finally announced the Itanium 9500, formerly known as Poulson. Added to this was the big surprise of HP announcing a refresh of its current line of Integrity servers, from blades to the large Superdome servers, with the new Itanium 9500.

As noted in an earlier post, the Itanium 9500 offers considerable performance improvements over its predecessors, and instantiated in HP’s new Integrity line it is positioned as delivering between 2X and 3X the performance per socket as previous Itanium 9300 (Tukwilla) systems at approximately the same price. For those remaining committed to Itanium and its attendant OS platforms, notably HP-UX, this is unmitigated good news. The fly in the ointment (I have never seen a fly in any ointment, but it does sound gross), of course, is HP’s dispute with Oracle. Despite the initial judgment in HP’s favor, the trial is a) not over yet, and b) Oracle has already filed for an early appeal of the initial verdict, which would ordinarily have to wait until the second phase of the trial, scheduled for next year, to finish. The net takeaway is that Oracle’s future availability on Itanium and HP-UX is not yet assured, so we really cannot advise the large number of Oracle users who will require Oracle 12 and later versions to relax yet.

Read more

Tectonic Shift In The ARM Ecosystem — AMD Announces ARM Intentions

Earlier this week, in conjunction with ARM Holdings plc’s announcement of the upcoming Cortex A53 and A57, full 64-bit CPU implementations based on the ARM V8 specification, AMD also announced that it would be designing and selling SOC (System On a Chip) products based on this technology in 2014, roughly coinciding with availability of 64-bit parts from ARM and other partners.

This is a major event in the ARM ecosystem. AMD, while much smaller than Intel, is still a multi-billion-dollar enterprise, and for the second largest vendor of x86 chips to also throw its hat into the ARM ecosystem and potentially compete with its own mainstream server and desktop CPU business is an aggressive move on the part of AMD management that carries some risk and much potential advantage.

Reduced to its essentials, what AMD announced (and in some cases hinted at):

  • Intention to produce A53/A57 SOC modules for multiple server segments. There was no formal statement of intentions regarding tablet/mobile devices, but it doesn’t take a rocket scientist to figure out that AMD wants a piece of this market, and ARM is a way to participate.
  • The announcement is wider that just the SOC silicon. AMD also hinted at making a range of IP, including its fabric architecture from the SeaMicro architecture, available in the form of “reusable IP blocks.” My interpretation is that it intends to make the fabric, reference architectures, and various SOCs available to its hardware system partners.
Read more

IBM Raises The CPU Technology Bar With POWER7+

Nathan Bedford Forrest, a Confederate general of despicable ideology and consummate tactics, spoke of “keepin up the skeer,” applying continued pressure to opponents to prevent them from regrouping and counterattacking. POWER7+, the most recent version of IBM’s POWER architecture, anticipated as a follow-up to the POWER7 for almost a year, was finally announced this week, and appears to be “keepin up the skeer” in terms of its competitive potential for IBM POWER-based systems. In short, it is a hot piece of technology that will keep existing IBM users happy and should help IBM maintain its impressive momentum in the Unix systems segment.

For the chip heads, the CPU is implemented in a 32 NM process, the same as Intel’s upcoming Poulson, and embodies some interesting evolutions in high-end chip design, including:

  • Use of DRAM instead of SRAM — IBM has pioneered the use of embedded DRAM (eDRAM) as embedded L3 cache instead of the more standard and faster SRAM. In exchange for the loss of speed, eDRAM requires fewer transistors and lower power, allowing IBM to pack a total of 80 MB (a lot) of shared L3 cache, far more than any other product has ever sported.
Read more