ARM-Based Servers – Looming Tsunami Or Just A Ripple In The Industry Pond?

From nothing more than an outlandish speculation, the prospects for a new entrant into the volume Linux and Windows server space have suddenly become much more concrete, culminating in an immense buzz at CES as numerous players, including NVIDIA and Microsoft, stoked the fires with innuendo, announcements, and demos.

Consumers of x86 servers are always on the lookout for faster, cheaper, and more power-efficient servers. In the event that they can’t get all three, the combination of cheaper and more energy-efficient seems to be attractive to a large enough chunk of the market to have motivated Intel, AMD, and all their system partners to develop low-power chips and servers designed for high density compute and web/cloud environments. Up until now the debate was Intel versus AMD, and low power meant a CPU with four cores and a power dissipation of 35 – 65 Watts.

The Promised Land

The performance trajectory of processors that were formerly purely mobile device processors, notably the ARM Cortex, has suddenly introduced a new potential option into the collective industry mindset. But is this even a reasonable proposition, and if so, what does it take for it to become a reality?

Our first item of business is to figure out whether or not it even makes sense to think about these CPUs as server processors. My quick take is yes, with some caveats. The latest ARM offering is the Cortex A9, with vendors offering dual core products at up to 1.2 GHz currently (the architecture claims scalability to four cores and 2 GHz). It draws approximately 2W, much less than any single core x86 CPU, and a multi-core version should be able to execute any reasonable web workload. Coupled with the promise of embedded GPUs, the notion of a server that consumes much less power than even the lowest power x86 begins to look attractive. But…

Read more

NetApp Acquires Akorri – Moving Up The Virtualization Stack

NetApp recently announced that it was acquiring Akorri, a small but highly regarded provider of management solutions for virtualized storage environments. All in all, this is yet another sign of the increasingly strategic importance of virtualized infrastructure and the need for existing players, regardless of how strong their positions are in their respective silos, to acquire additional tools and capabilities for management of an extended virtualized environment.

NetApp, while one of the strongest suppliers in the storage industry, not only faces continued pressure from not only EMC, which owns VMware and has been on a management software acquisition binge for years, but also renewed pressure from IBM and HP, who are increasingly tying their captive storage offerings into their own integrated virtualized infrastructure offerings. This tighter coupling of proprietary technology, while not explicitly disenfranchising external storage vendors, will still tighten the screws slightly and reduce the number of opportunities for NetApp to partner with them. Even Dell, long regarded as the laggard in high-end enterprise presence, has been ramping up its investment management and ability to deliver integrated infrastructure, including both the purchase of storage technology and a very clear signal with its run at 3Par and recent investments in companies such as Scalent (see my previous blog on Dell as an enterprise player and my colleague Andrew Reichman’s discussion of the 3Par acquisition) that it wants to go even further as a supplier of integrated infrastructure.

Read more

Intel Announces Sandy Bridge. A Big Deal? You Bet!

Intel today officially announced the first products based on the much-discussed Sandy Bridge CPU architecture, and first impressions are highly favorable, with my take being that Sandy Bridge represents the first step in a very aggressive product road map for Intel in 2011.

Sandy Bridge is the next architectural spin after Intel’s Westmere shrink of the predecessor Nehalem architecture (the “tick” in Intel’s famous “tick-tock” progression of architectural changes followed by process shrink) and incorporates some major innovations compared to the previous architecture:

  • Minor but in toto significant changes to many aspects of the low-level microarchitecture – more registers, better prefetch, changes to the way instructions and operands are decode, cached and written back to registers and cache.
  • Major changes in integration of functions on the CPU die – Almost all major subsystems, including CPU, memory controller, graphics controller and PCIe controller, are now integrated onto the same die, along with the ability to share data with much lower latency than in previous generations. In addition to more efficient data sharing, this level of integration allows for better power efficiency.
  • Improvements to media processing – A dedicated video transcoding engine and an extended vector instruction set for media and floating point calculations improves Sandy Bridge capabilities in several major application domains.
Read more

Checking In On Linux – Latest Linux Releases Show Continued Progress

I’ve recently had the opportunity to talk with a small sample of SLES 11 and RH 6 Linux users, all developing their own applications. All were long-time Linux users, and two of them, one in travel services and one in financial services, had applications that can be described as both large and mission-critical.

The overall message is encouraging for Linux advocates, both the calm rational type as well as those who approach it with near-religious fervor. The latest releases from SUSE and Red Hat, both based on the 2.6.32 Linux kernel, show significant improvements in scalability and modest improvements in iso-configuration performance. One user reported that an application that previously had maxed out at 24 cores with SLES 10 was now nearing production certification with 48 cores under SLES 11. Performance scalability was reported as “not linear, but worth doing the upgrade.”

Overall memory scalability under Linux is still a question mark, since the widely available x86 platforms do not exceed 3 TB of memory, but initial reports from a user familiar with HP’s DL 980 verify that the new Linux Kernel can reliably manage at least 2TB of RAM under heavy load.

File system options continue to expand as well. The older Linux FS standard, ETX4, which can scale to “only” 16 TB, has been joined by additional options such as XFS (contributed by SGI), which has been implemented in several installations with file systems in excess of 100 TB, relieving a limitation that may have been more psychological than practical for most users.

Read more

ScaleMP – Interesting Twist On Systems Scalability And Virtualization

I just spent some time talking to ScaleMP, an interesting niche player that provides a server virtualization solution. What is interesting about ScaleMP is that rather than splitting a single physical server into multiple VMs, they are the only successful offering (to the best of my knowledge) that allows I&O groups to scale up a collection of smaller servers to work as a larger SMP.

Others have tried and failed to deliver this kind of solution, but ScaleMP seems to have actually succeeded, with a claimed 200 customers and expectations of somewhere between 250 and 300 next year.

Their vSMP product comes in two flavors, one that allows a cluster of machines to look like a single system for purposes of management and maintenance while still running as independent cluster nodes, and one that glues the member systems together to appear as a single monolithic SMP.

Does it work? I haven’t been able to verify their claims with actual customers, but they have been selling for about five years, claim over 200 accounts, with a couple of dozen publicly referenced. All in all, probably too elaborate a front to maintain if there was really nothing there. The background of the principals and the technical details they were willing to share convinced me that they have a deep understanding of the low-level memory management, prefectching, and caching that would be needed to make a collection of systems function effectively as a single system image. Their smaller scale benchmarks displayed good scalability in the range of 4 – 8 systems, well short of their theoretical limits.

My quick take is that the software works, and bears investigation if you have an application that:

  1. Either is certified to run with ScaleMP (not many), or one where that you control the code.
  2. You understand the memory reference patterns of the application, and
Read more

Oracle Rolls Out Private Cloud Architecture And World-Record Transaction Performance

On Dec. 2, Oracle announced the next move in its program to integrate its hardware and software assets, with the introduction of Oracle Private Cloud Architecture, an integrated infrastructure stack with Infiniband and/or 10G Ethernet fabric, integrated virtualization, management and servers along with software content, both Oracle’s and customer-supplied. Oracle has rolled out the architecture as a general platform for a variety of cloud environments, along with three specific implementations, Exadata, Exalogic and the new Sunrise Supercluster, as proof points for the architecture.

Exadata has been dealt with extensively in other venues, both inside Forrester and externally, and appears to deliver the goods for I&O groups who require efficient consolidation and maximum performance from an Oracle database environment.

Exalogic is a middleware-targeted companion to the Exadata hardware architecture (or another instantiation of Oracle’s private cloud architecture, depending on how you look at it), presenting an integrated infrastructure stack ready to run either Oracle or third-party apps, although Oracle is positioning it as a Java middleware platform. It consists of the following major components integrated into a single rack:

  1. Oracle x86 or T3-based servers and storage.
  2. Oracle Quad-rate Infiniband switches and the Oracle Solaris gateway, which makes the Infiniband network look like an extension of the enterprise 10G Ethernet environment.
  3. Oracle Linux or Solaris.
  4. Oracle Enterprise Manager Ops Center for management.
Read more

Open Data Center Alliance – Lap Dog Or Watch Dog?

In October, with great fanfare, the Open Data Center Alliance unfurled its banners. The ODCA is a consortium of approximately 50 large IT consumers, including large manufacturing, hosting and telecomm providers, with the avowed intent of developing standards for interoperable cloud computing. In addition to the roster of users, the announcement highlighted Intel with an ambiguous role as a technology advisor to the group. The ODCA believes that it will achieve some weight in the industry due to its estimated $50 billion per year of cumulative IT purchasing power, and the trade press was full of praises for influential users driving technology as opposed to allowing rapacious vendors such as HP and IBM to drive users down proprietary paths that lead to vendor lock-in.

Now that we’ve had a month or more to allow the purple prose to settle a bit, let’s look at the underlying claims, potential impact of the ODCA and the shifting roles of vendors and consumers of technology. And let’s not forget about the role of Intel.

First, let me state unambiguously that one of the core intentions of the ODCA, the desire to develop common use case models that will in turn drive vendors to develop products that comply with the models based on the economic clout of the ODCA members (and hopefully there will be a correlation between ODCA member requirements and those of a wider set of consumers), is a good idea. Vendors spend a lot of time talking to users and trying to understand their requirements, and having the ODCA as a proxy for the requirements of a lot of very influential customers will be a benefit to all concerned.

Read more

What Will Be The Fate Of SUSE Linux?

As an immediate reaction to the recent announcement of Attachmate’s intention to acquire Novell, covered in depth by my colleagues and synthesized by Chris Voce in his recent blog post, I have received a string of inquiries about the probable fate of SUSE LINUX. Should we continue to invest? Will Attachmate kill it? Will it be sold?

Reduced to its essentials the answer is that we cannot predict the eventual ownership of SUSE Linux, but it is almost certain to remain a viable and widely available Linux distribution. SUSE is one of the crown jewels of Novell’s portfolio, with steady growth, gaining market share, generating increasing revenues, and from the outside at least, a profitable business.

Attachmate has two choices with SUSE – retain it as a profitable growth engine and attachment point for other Attachmate software and services, or package it up for sale. In either case they have to continue to invest in the product and its marketing. If Attachmate chooses to keep it, SUSE Linux will behave as it did with Novell. If they sell it, its acquirer will be foolish to do anything else. Speculation about potential acquirers has included HP, IBM, Cisco and Oracle, all of whom could make use of a Linux distribution as an internal product component in addition to the software and service revenues it could engender. But aside from an internal platform, for SUSE to have value as an industry alternative to Red Hat, it would have to remain vendor agnostic and widely available.

With the inescapable caveat that this is a developing situation, my current take on SUSE Linux is that there is no reason to back away from it or to fear that it will disappear into the maw of some giant IT company.

SUSE users, please weigh in.

Checking In With Cisco UCS – Continued Momentum, Decoupled From Corporate Malaise

I met recently with Cisco’s UCS group in San Jose to get a quick update on sales and maybe some hints about future development. The overall picture is one of rapid growth decoupled from whatever pressures Cisco management has cautioned about in other areas of the business.

Overall, according to recent disclosure by Cisco CEO John Chambers, Cisco’s UCS revenue is growing at a 550% Y/Y growth rate, with the most recent quarterly revenues indicating a $500M run rate (we make that out as about $125M quarterly revenue). This figure does not seem to include the over 4,000 blades used by Cisco IT, nor does it include units being consumed internally by Cisco and subsequently shipped to customers as part of appliances or other Cisco products. Also of note is the fact that it is fiscal Q1 for Cisco, traditionally its weakest quarter, although with an annual growth rate in excess of 500% we would expect that UCS sequential quarters will be marching to a totally different drummer than the overall company numbers.

Read more

Oracle Releases Solaris 11 — Game Changer Or Place Keeper?

Oracle recently announced the availability of Solaris 11 Express, the first iteration of its Solaris 11 product cycle. The feature set of this release is along the lines promised by Oracle at their August analyst event this year, including:

  • Scalability enhancements to set it up for future systems with higher core counts and requirements to schedule large numbers of threads.
  • Improvements to zFS, Oracle’s highly scalable file system.
  • Reduction of boot times to the range of 10 seconds — a truly impressive accomplishment.
  • Optimizations to support Oracle Exadata and Exalogic integrated solutions. While some of these changes may be very specific to Oracle’s stack, most of them are almost certain to improve any application that requires some combination of high thread counts, large memory and low-latency communications with either 10G Ethernet or Infiniband.
  • Improvements in availability due to reductions on the number of reboot scenarios, improvements in patching and improved error recovery. This is hard to measure, but Oracle claims they are close to an OS which does not need to come down for normal maintenance, a goal of all of the major UNIX vendors and long a signature of mainframe environments.
Read more