Microsoft and Dell Change the Private/Hybrid Cloud Game with On-Premise Azure

What was announced?

On October 20 at TechEd, Microsoft quietly slipped in what looks like a potential game-changing announcement in the private/hybrid cloud world when they rolled out Microsoft Cloud Platform System (CPS), an integrated hardware/software system that combines an Azure-consistent on premise cloud with an optimized hardware stack from Dell.

Why does it matter?

Read more

IBM Sheds Yet Another Hardware Business - Pays to Get Rid of Semiconductor Fabrication

While the timing of the event comes as a surprise, the fact that IBM has decided to unload its technically excellent but unprofitable semiconductor manufacturing operation does not, nor does its choice of Globalfoundries, with whom it has had a longstanding relationship.
 
Read more

New ARM-based Moonshot Servers from HP Exemplify Workload-Specific Computing

One of the developing trends in computing, relevant to both enterprise and service providers alike, is the notion of workload-specific or application-centric computing architectures. These architectures, optimized for specific workloads, promise improved efficiencies for running their targeted workloads, and by extension the services that they support. Earlier this year we covered the basics of this concept in “Optimize Scalable Workload-Specific Infrastructure for Customer Experiences”, and this week HP has announced a pair of server cartridges for their Moonshot system that exemplify this concept, as well as being representative of the next wave of ARM products that will emerge during the remainder of 2014 and into 2015 to tilt once more at the x86 windmill that currently dominates the computing landscape.

Specifically, HP has announced the ProLiant m400 Server Cartridge (m400) and the ProLiant m800 Server Cartridge (m800), both ARM-based servers packaged as cartridges for the HP Moonshot system, which can hold up to 45 of these cartridges in its approximately 4U enclosure. These servers are interesting from two perspectives – that they are both ARM-based products, one being the first tier-1 vendor offering of a 64-bit ARM CPU and that they are both being introduced with a specific workload target in mind for which they have been specifically optimized.

Read more

Windows Server 2003 – A Very Unglamorous But Really Important Problem, Waiting To Bite

Very much in the shadows of all the press coverage and hysteria attendant on emerging cloud architectures and customer-facing systems of engagement are the nitty-gritty operational details that lurk like monsters in the swamp of legacy infrastructure, and some of them have teeth. And sometimes these teeth can really take a bite out of the posterior of an unprepared organization.

One of those toothy animals that I&O groups are increasingly encountering in their landscapes is the problem of what to do with Windows Server 2003 (WS2003). It turns out there are still approximately 11 million WS2003 systems running today, with another 10+ million instances running as VM guests. Overall, possibly more than 22 million OS images and a ton of hardware that will need replacing and upgrading. And increasing numbers of organizations have finally begun to take seriously the fact that Microsoft is really going to end support and updates as of July 2015.

Based on the conversations I have been having with our clients, the typical I&O group that is now scrambling to come up with a plan has not been willfully negligent, nor are they stupid. Usually WS2003 servers are legacy servers, quietly running some mature piece of code, often in satellite locations or in the shops of acquired companies. The workloads are a mix of ISV and bespoke code, but it is often a LOB-specific application, with the run-of-the-mill collaboration, infrastructure servers and, etc. having long since migrated to newer platforms. A surprising number of clients have told me that they have identified the servers, but not always the applications or the business owners – often a complex task for an old resource in a large company.

Read more

Taking Stock Of Linux – Maturation Continues

[Apologies to all who have just read this post with a sense of deja-vue. I saw a typo, corrected it and then republished the blog, and it reset the publication date. This post was originally published several months ago.]

Having been away from the Linux scene for a while, I recently took a look at a newer version of Linux, SUSE Enterprise Linux Version 11.3, which is representative of the latest feature sets from the Linux 3.0 et seq kernel available to the entre Linux community, including SUSE, Red Hat, Canonical and others. It is apparent, both from the details on SUSE 11.3 and from perusing the documentation on other distribution providers, that Linux has continued to mature nicely as both a foundation for large scale-out clouds as well as a strong contender for the kind of enterprise workloads that previously were only comfortable on either RISC/UNIX systems or large Microsoft Server systems. In effect, Linux has continued its maturation to the point where its feature set and scalability begin to look like a top-tier UNIX from only a couple of years ago.

Among the enterprise technology that caught my eye:

  • Scalability – The Linux kernel now scales to 4096 x86 CPUs and up to 16 TB of memory, well into high-end UNIX server territory, and will support the largest x86 servers currently shipping.
  • I/O – The Linux kernel now includes btrfs (a geeky contraction of “Better File System), an open source file system that promises much of the scalability and feature set of Oracle’s popular ZFS file system including checksums, CoW, snapshotting, advanced logical volume management including thin provisioning and others. The latest releases also include advanced features like geoclustering and remote data replication to support advanced HA topologies.
Read more

From Intel Developer Forum – New Xeon E5 v3 Promises A Respite For Capacity Planners

I'm at IDF, a major geekfest for the people interested in the guts of today’s computing infrastructure, and will be immersing myself in the flow for a couple of days. Before going completely off the deep end, I wanted to call out the announcement of the new Xeon E5. While I’ve discussed it in more depth in an accompanying Quick Take just published on our main website, I wanted to add some additional comments on its implications for data center operations, particularly in the areas of capacity planning and long-term capital budgeting.

For many years, each successive iteration of Intel’s and partners’ roadmaps has been quietly delivering a major benefit that seldom gets top billing – additional capacity within the same power and physical footprint, and the resulting ability for users from small enterprises to mega-scale service providers, to defer additional data spending capital expense.

Read more

VMworld – Reflections on a Transformational Event

A group of us just published an analysis of VMworld (Breaking Down VMworld), and I thought I’d take this opportunity to add some additional color to the analysis. The report is an excellent synthesis of our analysis, the work of a talented team of collaborators with my two cents thrown in as well, but I wanted to emphasize a few additional impressions, primarily around storage, converged infrastructure, and the  overall tone of the show.

First, storage. If they ever need a new name for the show, they might consider “StorageWorld” – it seemed to me that just about every other booth on the show floor was about storage. Cloud storage, flash storage, hybrid storage, cheap storage, smart storage, object storage … you get the picture.[i] Reading about the hyper-growth of storage and the criticality of storage management to the overall operation of a virtualized environment does not drive the concept home in quite the same way as seeing 1000s of show attendees thronging the booths of the storage vendors, large and small, for days on end. Another leading indicator, IMHO, was the “edge of the show” booths, the cheaper booths on the edge of the floor, where smaller startups congregate, which was also well populated with new and small storage vendors – there is certainly no shortage of ambition and vision in the storage technology pipeline for the next few years.

Read more

Extremes of x86 Servers Illustrate the Depth of the Ecosystem and the Diversity of Workloads

I’ve recently been thinking a lot about application-specific workloads and architectures (Optimize Scalalable Workload-Specific Infrastructure for Customer Experiences), and it got me to thinking about the extremes of the server spectrum – the very small and the very large as they apply to x86 servers. The range, and the variation in intended workloads is pretty spectacular as we diverge from the mean, which for the enterprise means a 2-socket Xeon server, usually in 1U or 2U form factors.

At the bottom, we find really tiny embedded servers, some with very non-traditional packaging. My favorite is probably the technology from Arnouse digital technology, a small boutique that produces computers primarily for military and industrial ruggedized environments.

Slightly bigger than a credit card, their BioDigital server is a rugged embedded server with up to 8 GB of RAM and 128 GB SSD and a very low power footprint. Based on an Atom-class CPU, thus is clearly not the choice for most workloads, but it is an exemplar of what happens when the workload is in a hostile environment and the computer maybe needs to be part of a man-carried or vehicle-mounted portable tactical or field system. While its creators are testing the waters for acceptance as a compute cluster with up to 4000 of them mounted in a standard rack, it’s likely that these will remain a niche product for applications requiring the intersection of small size, extreme ruggedness and complete x86 compatibility, which includes a wide range of applications from military to portable desktop modules.

Read more

Red Hat Releases RHEL 7 – Linux Continues Its March To The Top

When the first Linux distributions based on the 3.0 kernel were released almost a year ago, I was struck by how far Linux had advanced. The latest turn of the crank for Linux, in the form of Red Hat Enterprise Linux 7 (RHEL 7), reinforces this opinion. Built primarily on recent versions of the Linux 3.0 et seq kernel available to the entire Linux community, including SUSE, Red Hat, Cannonical and others, RHEL 7 continues the progress of the Linux community toward an OS that is fully capable of replacing proprietary RISC/UNIX for the vast majority of enterprise workloads. It is apparent, both from the details on RHEL 7 and from perusing the documentation on other distribution providers, that Linux has continued to mature nicely as both a foundation for large scale-out clouds as well as a strong contender for the kind of enterprise workloads that previously were only comfortable on either RISC/UNIX systems or large Microsoft Server systems. In effect, Linux has continued its maturation to the point where its feature set and scalability begin to look like and feel like a top-tier UNIX.

In addition to the required low-level plumbing – schedulers, memory management and file systems capable of keeping up with both high-volume transactions and operating effectively in large distributed clusters – Red Hat has also focused on features to improve the installation and management experience, thus directly reducing cost of ownership, following in the footsteps of other modern OS development trajectories.

Among the enterprise technology that caught my eye:

Read more

Decoding Huawei – Emergence as a Major IT Player Looms

Last month I attended Huawei’s annual Global Analyst Summit, for the requisite several days of mass presentations, executive meetings and tours that typically constitute such an event. Underneath my veneer of blasé cynicism, I was actually quite intrigued, since I really knew very little about Huawei. And what I did know was tainted by popular and persistent negatives – they were the ones who supposedly copied Cisco’s IP to get into the network business, and, until we got better acquainted with our own Federal Government’s little shenanigans, Huawei was the big bad boogie man who was going to spy on us with every piece of network equipment they installed.

Reality was quite a bit different. Ancient disputes about IP aside, I found a $40B technology powerhouse who is probably the least-known and understood company of its size in the world, and one which appears poised to pose major challenges to incumbents in several areas, including mainstream enterprise IT.

So you don’t know Huawei

First, some basics. Huawei’s 2013 revenue was $39.5 Billion, which puts it right up there with some much better-known names such as Lenovo, Oracle, Dell and Cisco.

 

% Revenue / $ revenue (Billions)

Annual Growth rate

Telco & network equipment

70 / $27.7

7%

Consumer (mobile devices)

24 / $9.5

18%

Enterprise business (servers, storage, software)

Read more