IBM Pushes Chip Technology with Stunning 7 nm Chip Demonstration

Richard Fichera

In the world of CMOS semiconductor process, the fundamental heartbeat that drives the continuing evolution of all the devices and computers we use and governs at a fundamantal level hte services we can layer on top of them is the continual shrinkage of the transistors we build upon, and we are used to the regular cadence of miniaturization, generally led by Intel, as we progress from one generation to the next. 32nm logic is so old-fashioned, 22nm parts are in volume production across the entire CPU spectrum, 14 nm parts have started to appear, and the rumor mill is active with reports of initial shipments of 10 nm parts in mid-2016. But there is a collective nervousness about the transition to 7 nm, the next step in the industry process roadmap, with industry leader Intel commenting at the recent 2015 International Solid State Circuit conference that it may have to move away from conventional silicon materials for the transition to 7 nm parts, and that there were many obstacles to mass production beyond the 10 nm threshold.

But there are other players in the game, and some of them are anxious to demonstrate that Intel may not have the commanding lead that many observers assume they have. In a surprise move that hints at the future of some of its own products and that will certainly galvanize both partners and competitors, IBM, discounted by many as a spent force in the semiconductor world with its recent divestiture of its manufacturing business, has just made a real jaw-dropper of an announcement – the existence of working 7nm semiconductors.

What was announced?

Read more

Facebook and HP Show Different Visions for Web-scale

Richard Fichera

Recently we’ve had a chance to look again at two very conflicting views from HP and Facebook on how to do web-scale and cloud computing, both announced at the recent OCP annual event in California.

From HP come its new CloudLine systems, the public face of their joint venture with Foxcon. Early details released by HP show a line of cost-optimized servers descended from a conventional engineering lineage and incorporating selected bits of OCP technology to reduce costs. These are minimalist rack servers designed, after stripping away all the announcement verbiage, to compete with white-box vendors such as Quanta, SuperMicro and a host of others. Available in five models ranging from the minimally-featured CL1100 up through larger nodes designed for high I/O, big data and compute-intensive workloads, these systems will allow large installations to install capacity at costs ranging from 10 – 25% less than the equivalent capacity in their standard ProLiant product line. While the strategic implications of HP having to share IP and market presence with Foxcon are still unclear, it is a measure of HP’s adaptability that they were willing to execute on this arrangement to protect against inroads from emerging competition in the most rapidly growing segment of the server market, and one where they have probably been under immense margin pressure.

Read more

Intel Announces Xeon SOC – Seriously Raising the Bar for AMD and ARM Competition

Richard Fichera

Intel has made no secret of its development of the Xeon D, an SOC product designed to take Xeon processing close to power levels and product niches currently occupied by its lower-power and lower performance Atom line, and where emerging competition from ARM is more viable.

The new Xeon D-1500 is clear evidence that Intel “gets it” as far as platforms for hyperscale computing and other throughput per Watt and density-sensitive workloads, both in the enterprise and in the cloud are concerned. The D1500 breaks new ground in several areas:

It is the first Xeon SOC, combining 4 or 8 Xeon cores with embedded I/O including SATA, PCIe and multiple 10 nd 1 Gb Ethernet ports.

(Source: Intel)

It is the first of Intel’s 14 nm server chips expected to be introduced this year. This expected process shrink will also deliver a further performance and performance per Watt across the entire line of entry through mid-range server parts this year.

Why is this significant?

With the D-1500, Intel effectively draws a very deep line in the sand for emerging ARM technology as well as for AMD. The D1500, with 20W – 45W power, delivers the lower end of Xeon performance at power and density levels previously associated with Atom, and close enough to what is expected from the newer generation of higher performance ARM chips to once again call into question the viability of ARM on a pure performance and efficiency basis. While ARM implementations with embedded accelerators such as DSPs may still be attractive in selected workloads, the availability of a mainstream x86 option at these power levels may blunt the pace of ARM design wins both for general-purpose servers as well as embedded designs, notably for storage systems.

Read more

Rack-Scale Architectures get Real with Intel RSA Introduction

Richard Fichera

What Is It?

We have been watching many variants on efficient packaging of servers for highly scalable workloads for years, including blades, modular servers, and dense HPC rack offerings from multiple vendors, most of the highly effective, and all highly proprietary. With the advent of Facebook’s Open Compute Project, the table was set for a wave of standardized rack servers and the prospect of very cost-effective rack-scale deployments of very standardized servers. But the IP for intelligently shared and managed power and cooling at a rack level needed a serious R&D effort that the OCP community, by and large, was unwilling to make. Into this opportunity stepped Intel, which has been quietly working on its internal Rack Scale Architecture (RSA) program for the last couple of years, and whose first product wave was officially outed recently as part of an announcement by Intel and Ericsson.

While not officially announcing Intel’s product nomenclature, Ericsson announced their “HDS 8000” based on Intel’s RSA, and Intel representatives then went on to explain the fundamental of RSA, including a view of the enhancements coming this year.

RSA is a combination of very standardized x86 servers, a specialized rack enclosure with shared Ethernet switching and power/cooling, and layers of firmware to accomplish a set of tasks common to managing a rack of servers, including:

·         Asset discovery

·         Switch setup and management

·         Power and cooling management across the servers with the rack

·         Server node management

Read more

Rethinking Analytics Infrastructure

Richard Fichera

Last year I published a reasonably well-received research document on Hadoop infrastructure, “Building the Foundations for Customer Insight: Hadoop Infrastructure Architecture”. Now, less than a year later it’s looking obsolete, not so much because it was wrong for traditional (and yes, it does seem funny to use a word like “traditional” to describe a technology that itself is still rapidly evolving and only in mainstream use for a handful of years) Hadoop, but because the universe of analytics technology and tools has been evolving at light-speed.

If your analytics are anchored by Hadoop and its underlying map reduce processing, then the mainstream architecture described in the document, that of clusters of servers each with their own compute and storage, may still be appropriate. On the other hand, if, like many enterprises, you are adding additional analysis tools such as NoSQL databases, SQL on Hadoop (Impala, Stinger, Vertica) and particularly Spark, an in-memory-based analytics technology that is well suited for real-time and streaming data, it may be necessary to begin reassessing the supporting infrastructure in order to build something that can continue to support Hadoop as well as cater to the differing access patterns of other tools sets. This need to rethink the underlying analytics plumbing was brought home by a recent demonstration by HP of a reference architecture for analytics, publicly referred to as the HP Big Data Reference Architecture.

Read more

Mainframe Futures – Reading the Tea Leaves for Future Investments

Richard Fichera

I’ve been getting a steady trickle of inquires this year about the future of the mainframe from our enterprise clients. Most of them are more or less in the form of “I have a lot of stuff running on mainframes. Is this a viable platform for the next decade or is IBM going to abandon them.” I think the answer is that the platform is secure, and in the majority of cases the large business-critical workloads that are currently on the mainframe probably should remain on the mainframes. In the interests of transparency I’ve tried to lay out my reasoning below so that you can see if it applies to your own situation.

How Big is the Mainframe LOB?

It's hard to get exact figures for the mainframe contributions to IBM's STG (System & Technology Group) total revenues, but the data they have shared shows that their mainframe revenues seem to have recovered from the declines of previous quarters and at worst flattened. Because the business is inherently somewhat cyclical, I would expect that the next cycle of mainframes, rumored to be arriving next year, should give them a boost similar to the last major cycle, allowing them to show positive revenues next year.

Read more

Bare Metal Clouds – Performance and Isolation Drive Consideration

Richard Fichera

I’ve been talking to a number of users and providers of bare-metal cloud services, and am finding the common threads among the high-profile use cases both interesting individually and starting to connect some dots in terms of common use cases for these service providers who provide the ability to provision and use dedicated physical servers with very similar semantics to the common VM IaaS cloud – servers that can be instantiated at will in the cloud, provisioned with a variety of OS images, be connected to storage and run applications. The differentiation for the customers is in behavior of the resulting images:

  • Deterministic performance – Your workload is running on a dedicated resource, so there is no question of any “noisy neighbor” problem, or even of sharing resources with otherwise well-behaved neighbors.
  • Extreme low latency – Like it or not, VMs, even lightweight ones, impose some level of additional latency compared to bare-metal OS images. Where this latency is a factor, bare-metal clouds offer a differentiated alternative.
  • Raw performance – Under the right conditions, a single bare-metal server can process more work than a collection of VMs, even when their nominal aggregate performance is similar. Benchmarking is always tricky, but several of the bare metal cloud vendors can show some impressive comparative benchmarks to prospective customers.
Read more

Shifting Sands – Changing Alliances Underscore the Dynamism of the Infrastructure Systems Market

Richard Fichera

There is always a tendency to regard the major players in large markets as being a static background against which the froth of smaller companies and the rapid dance of customer innovation plays out. But if we turn our lens toward the major server vendors (who are now also storage and networking as well as software vendors), we see that the relatively flat industry revenues hide almost continuous churn. Turn back the clock slightly more than five years ago, and the market was dominated by three vendors, HP, Dell and IBM. In slightly more than five years, IBM has divested itself of highest velocity portion of its server business, Dell is no longer a public company, Lenovo is now a major player in servers, Cisco has come out of nowhere to mount a serious challenge in the x86 server segment, and HP has announced that it intends to split itself into two companies.

And it hasn’t stopped. Two recent events, the fracturing of the VCE consortium and the formerly unthinkable hook-up of IBM and Cisco illustrate the urgency with which existing players are seeking differential advantage, and reinforce our contention that the whole segment of converged and integrated infrastructure remains one of the active and profitable segments of the industry.

EMC’s recent acquisition of Cisco’s interest in VCE effectively acknowledged what most customers have been telling us for a long time – that VCE had become essentially an EMC-driven sales vehicle to sell storage, supported by VMware (owned by EMC) and Cisco as a systems platform. EMC’s purchase of Cisco’s interest also tacitly acknowledges two underlying tensions in the converged infrastructure space:

Read more

Dell Introduces FX system - the Shape of Infrastructure to Come?

Richard Fichera

Dell today announced its new FX system architecture, and I am decidedly impressed.

Dell FX is a 2U flexible infrastructure building block that allows infrastructure architects to compose an application-appropriate server and storage infrastructure out of the following set of resources:

  • Multiple choices of server nodes, ranging from multi-core Atom to new Xeon E5 V3 servers. With configurations ranging from 2 to 16 server nodes per enclosure, there is pretty much a configuration point for most mainstream applications.
  • A novel flexible method of mapping disks from up to three optional disk modules, each with 16 drives - the mapping, controlled by the onboard management, allows each server to appear as if the disk is locally attached DASD, so no changes are needed in any software that thinks it is accessing local storage. A very slick evolution in storage provisioning.
  • A set of I/O aggregators for consolidating Ethernet and FC I/O from the enclosure.

All in all, an attractive and flexible packaging scheme for infrastructure that needs to be tailored to specific combinations of server, storage and network configurations. Probably an ideal platform to support the Nutanix software suite that Dell is reselling as well. My guess is that other system design groups are thinking along these lines, but this is now a pretty unique package, and merits attention from infrastructure architects.

Forrester clients, I've published a Quick Take report on this, Quick Take: Dell's FX Architecture Holds Promise To Power Modern Services

IBM Sheds Yet Another Hardware Business - Pays To Get Rid Of Semiconductor Fabrication

Richard Fichera
While the timing of the event comes as a surprise, the fact that IBM has decided to unload its technically excellent but unprofitable semiconductor manufacturing operation does not, nor does its choice of Globalfoundries, with whom it has had a longstanding relationship.
 
Read more