Taking Stock Of Linux – Maturation Continues

Richard Fichera

[Apologies to all who have just read this post with a sense of deja-vue. I saw a typo, corrected it and then republished the blog, and it reset the publication date. This post was originally published several months ago.]

Having been away from the Linux scene for a while, I recently took a look at a newer version of Linux, SUSE Enterprise Linux Version 11.3, which is representative of the latest feature sets from the Linux 3.0 et seq kernel available to the entre Linux community, including SUSE, Red Hat, Canonical and others. It is apparent, both from the details on SUSE 11.3 and from perusing the documentation on other distribution providers, that Linux has continued to mature nicely as both a foundation for large scale-out clouds as well as a strong contender for the kind of enterprise workloads that previously were only comfortable on either RISC/UNIX systems or large Microsoft Server systems. In effect, Linux has continued its maturation to the point where its feature set and scalability begin to look like a top-tier UNIX from only a couple of years ago.

Among the enterprise technology that caught my eye:

  • Scalability – The Linux kernel now scales to 4096 x86 CPUs and up to 16 TB of memory, well into high-end UNIX server territory, and will support the largest x86 servers currently shipping.
  • I/O – The Linux kernel now includes btrfs (a geeky contraction of “Better File System), an open source file system that promises much of the scalability and feature set of Oracle’s popular ZFS file system including checksums, CoW, snapshotting, advanced logical volume management including thin provisioning and others. The latest releases also include advanced features like geoclustering and remote data replication to support advanced HA topologies.
Read more

IBM Announces Next Generation POWER Systems – Big Win for AIX Users, New Option for Linux

Richard Fichera

On April 23, IBM rolled out the long-awaited POWER8 CPU, the successor to POWER7+, and given the extensive pre-announcement speculation, the hardware itself was no big surprise (the details are fascinating, but not suitable for this venue), offering an estimated  30 - 50% improvement in application performance over the latest POWER7+, with potential for order of magnitude improvements with selected big data and analytics workloads. While the technology is interesting, we are pretty numb to the “bigger, better, faster” messaging that inevitably accompanies new hardware announcements, and the real impact of this announcement lies in its utility for current AIX users and IBM’s increased focus on Linux and its support of the OpenPOWER initiative.

Technology

OK, so we’re numb, but it’s still interesting. POWER8 is an entirely new processor generation implemented in 22 nm CMOS (the same geometry as Intel’s high-end CPUs). The processor features up to 12 cores, each with up to 8 threads, and a focus on not only throughput but high performance per thread and per core for low-thread-count applications. Added to the mix is up to 1 TB of memory per socket, massive PCIe 3 I/O connectivity and Coherent Accelerator Processor Interface (CAPI), IBM’s technology to deliver memory-controller-based access for accelerators and flash memory in POWER systems. CAPI figures prominently in IBM’s positioning of POWER as the ultimate analytics engine, with the announcement profiling the performance of a configuration using 40 TB of CAPI-attached flash for huge in-memory analytics at a fraction of the cost of a non-CAPI configuration.[i]

A Slam-dunk for AIX users and a new play for Linux

Read more

Systems of Engagement vs Systems of Reference – Core Concept for Infrastructure Architecture

Richard Fichera

My Forrester colleagues Ted Schadler and John McCarthy have written about the differences between Systems of Reference (SoR) and Systems of Engagement (SoE) in the customer-facing systems and mobility, but after further conversations with some very smart people at IBM, I think there are also important reasons for infrastructure architects to understand this dichotomy. Scalable and flexible systems of engagement, engagement, built with the latest in dynamic web technology and the back-end systems of record, highly stateful usually transactional systems designed to keep track of the “true” state of corporate assets are very different animals from an infrastructure standpoint in two fundamental areas:

Suitability to cloud (private or public) deployment – SoE environments, by their nature, are generally constructed using horizontally scalable technologies, generally based on some level of standards including web standards, Linux or Windows OS, and some scalalable middleware that hides the messy details of horizontally scaling a complex application. In addition, the workloads are generally highly parallel, with each individual interaction being of low value. This characteristic leads to very different demands on the necessity for consistency and resiliency.

Read more

Oracle Delivers On SPARC Promises

Richard Fichera

Background

When I returned to Forrester in mid-2010, one of the first blog posts I wrote was about Oracle’s new roadmap for SPARC and Solaris, catalyzed by numerous client inquiries and other interactions in which Oracle’s real level of commitment to future SPARC hardware was the topic of discussion. In most cases I could describe the customer mood as skeptical at best, and panicked and committed to migration off of SPARC and Solaris at worst. Nonetheless, after some time spent with Oracle management, I expressed my improved confidence in the new hardware team that Oracle had assembled and their new roadmap for SPARC processors after the successive debacles of the UltraSPARC-5 and Rock processors under Sun’s stewardship.

Two and a half years later, it is obvious that Oracle has delivered on its commitments regarding SPARC and is continuing its investments in SPARC CPU and system design as well as its Solaris OS technology. The latest evolution of SPARC technology, the SPARC T5 and the soon-to-be-announced M5, continue the evolution and design practices set forth by Oracle’s Rick Hetherington in 2010 — incremental evolution of a common set of SPARC cores, differentiation by variation of core count, threads and cache as opposed to fundamental architecture, and a reliable multi-year performance progression of cores and system scalability.

Geek Stuff – New SPARC Hardware

Read more

HP And Intel Announce Poulson And New Integrity Servers – Great News For A Select Few

Richard Fichera

On Tuesday November 8, after more than a year of pre-announcement disclosures that eventually left very little to the imagination, Intel finally announced the Itanium 9500, formerly known as Poulson. Added to this was the big surprise of HP announcing a refresh of its current line of Integrity servers, from blades to the large Superdome servers, with the new Itanium 9500.

As noted in an earlier post, the Itanium 9500 offers considerable performance improvements over its predecessors, and instantiated in HP’s new Integrity line it is positioned as delivering between 2X and 3X the performance per socket as previous Itanium 9300 (Tukwilla) systems at approximately the same price. For those remaining committed to Itanium and its attendant OS platforms, notably HP-UX, this is unmitigated good news. The fly in the ointment (I have never seen a fly in any ointment, but it does sound gross), of course, is HP’s dispute with Oracle. Despite the initial judgment in HP’s favor, the trial is a) not over yet, and b) Oracle has already filed for an early appeal of the initial verdict, which would ordinarily have to wait until the second phase of the trial, scheduled for next year, to finish. The net takeaway is that Oracle’s future availability on Itanium and HP-UX is not yet assured, so we really cannot advise the large number of Oracle users who will require Oracle 12 and later versions to relax yet.

Read more

IBM Raises The CPU Technology Bar With POWER7+

Richard Fichera

Nathan Bedford Forrest, a Confederate general of despicable ideology and consummate tactics, spoke of “keepin up the skeer,” applying continued pressure to opponents to prevent them from regrouping and counterattacking. POWER7+, the most recent version of IBM’s POWER architecture, anticipated as a follow-up to the POWER7 for almost a year, was finally announced this week, and appears to be “keepin up the skeer” in terms of its competitive potential for IBM POWER-based systems. In short, it is a hot piece of technology that will keep existing IBM users happy and should help IBM maintain its impressive momentum in the Unix systems segment.

For the chip heads, the CPU is implemented in a 32 NM process, the same as Intel’s upcoming Poulson, and embodies some interesting evolutions in high-end chip design, including:

  • Use of DRAM instead of SRAM — IBM has pioneered the use of embedded DRAM (eDRAM) as embedded L3 cache instead of the more standard and faster SRAM. In exchange for the loss of speed, eDRAM requires fewer transistors and lower power, allowing IBM to pack a total of 80 MB (a lot) of shared L3 cache, far more than any other product has ever sported.
Read more

HP Vs. Oracle – Despite Verdict In Favor Of HP, The End Is Not Yet In Sight

Richard Fichera

This week the California courts handed down a nice present for HP — a verdict confirming that Oracle was required to continue to deliver its software on HP’s Itanium-based Integrity servers. This was a major victory for HP, on the face of it giving them the prize they sought — continued availability of Oracle’s eponymous database on their high-end systems.

However, HP’s customers should not immediately assume that everything has returned to a “status quo ante.” Once Humpty Dumpty has fallen off the wall it is very difficult to put the pieces together again. As I see it, there are still three major elephants in the room that HP users must acknowledge before they make any decisions:

  • Oracle will appeal, and there is no guarantee of the outcome. The verdict could be upheld or it could be reversed. If it is upheld, then that represents a further delay in the start date from which Oracle will be measured for its compliance with the court ordered development. Oracle will also continue to press its counterclaims against HP, but those do not directly relate to the continued development or Oracle software on Itanium.
  • Itanium is still nearing the end of its road map. A reasonable interpretation of the road map tea leaves that have been exposed puts the final Itanium release at about 2015 unless Intel decides to artificially split Kittson into two separate releases. Integrity customers must take this into account as they buy into the architecture in the last few years of Itanium’s life, although HP can be depended on to offer high-quality support for a decade after the last Itanium CPU rolls off Intel’s fab lines. HP has declared its intention to produce Integrity-level x86 systems, but OS support intentions are currently stated as Linux and Windows, not HP-UX.
Read more

HP Expands Its x86 Options With Mission-Critical Program – Defense And Offense Combined

Richard Fichera

Today HP announced a new set of technology programs and future products designed to move x86 server technology for both Windows and Linux more fully into the realm of truly mission-critical computing. My interpretation of these moves is that it is both a combined defensive and pro-active offensive action on HP’s part that will both protect them as their Itanium/HP-UX portfolio slowly declines as well as offer attractive and potentially unique options for both current and future customers who want to deploy increasingly critical services on x86 platforms.

What’s Coming?

Bearing in mind that the earliest of these elements will not be in place until approximately mid-2012, the key elements that HP is currently disclosing are:

ServiceGuard for Linux – This is a big win for Linux users on HP, and removes a major operational and architectural hurdle for HP-UX migrations. ServiceGuard is a highly regarded clustering and HA facility on HP-UX, and includes many features for local and geographically distributed HA. The lack of ServiceGuard is often cited as a risk in HP-UX migrations. The availability of ServiceGuard by mid-2012 will remove yet another barrier to smooth migration from HP-UX to Linux, and will help make sure that HP retains the business as it migrates from HP-UX.

Analysis engine for x86 – Analysis engine is internal software that provides system diagnostics, predictive failure analysis and self-repair on HP-UX systems. With an uncommitted delivery date, HP will port this to selected x86 servers. My guess is that since the analysis engine probably requires some level of hardware assist, the analysis engine will be paired with the next item on the list…

Read more

UNIX – Dead Or Alive?

Richard Fichera

There has been a lot of ill-considered press coverage about the “death” of UNIX and coverage of the wholesale migration of UNIX workloads to LINUX, some of which (the latter, not the former) I have contributed to. But to set the record straight, the extinction of UNIX is not going to happen in our lifetime.

While UNIX revenues are not growing at any major clip, it appears as if they have actually had a slight uptick over the past year, probably due to a surge by IBM, and seem to be nicely stuck around the $18 - 20B level annual range. But what is important is the “why,” not the exact dollar figure.

UNIX on proprietary RISC architectures will stay around for several reasons that primarily revolve around their being the only close alternative to mainframes in regards to specific high-end operational characteristics:

  • Performance – If you need the biggest single-system SMP OS image, UNIX is still the only realistic commercial alternative other than mainframes.
  • Isolated bulletproof partitionability – If you want to run workload on dynamically scalable and electrically isolated partitions with the option to move workloads between them while running, then UNIX is your answer.
  • Near-ultimate availability – If you are looking for the highest levels of reliability and availability ex mainframes and custom FT systems, UNIX is the answer. It still possesses slight availability advantages, especially if you factor in the more robust online maintenance capabilities of the leading UNIX OS variants.
Read more

Oracle Open World Part 3 - Oracle’s “Engineered Systems”: Astute Integration Or Inspired Folly?

Richard Fichera

OK, out of respect for your time, now that I’ve caught you with a title that promises some drama I’ll cut to the chase and tell you that I definitely lean toward the former. Having spent a couple of days here at Oracle Open World poking around the various flavors of Engineered Systems, including the established Exadata and Exalogic along with the new SPARC Super Cluster (all of a week old) and the newly announced Exalytic system for big data analytics, I am pretty convinced that they represent an intelligent and modular set of optimized platforms for specific workloads. In addition to being modular, they give me the strong impression of a “composable” architecture – the various elements of processing nodes, Oracle storage nodes, ZFS file nodes and other components can clearly be recombined over time as customer requirements dictate, either as standard products or as custom configurations.

Read more