Difference Between Dell And HP Q1 2011 Performances Much Less Than The Investment Community Thinks

Andrew Bartels

Hewlett-Packard reported its financial results for the quarter ending on April 30, 2011, early in the day on May 17, a day sooner than expected. Dell reported its financial results the same day, at its normal time at the end of the day. In many ways, as we will see in a minute, the results were similar. Yet the financial market reaction was dramatically different. HP's stock price dropped by 7% during the day, while Dell's stock price rose by almost 7% in after-hours trading. Bloomberg News, in its article on the two companies' results, headlined what it saw as the reason for the different performance: "Dell Shares Rise After Corporate Spending Gives Company Edge Over Rival HP."

I am not a stock analyst, nor is Forrester in the business of analyzing or forecasting stock performance. But the divergent responses of the stock market to the financial results of HP versus Dell do have implications for vendor strategy, while the underlying results show where the tech market is headed.

First, let's compare the actual numbers. HP's revenues in the quarter were up by 3%, and right in line with expectations, while Dell's revenues were just 1% higher, and lower than expectations. Dell's sales to business rose by 3%, while HP's sales increased by 8%. Dell's sales to consumers fell by 7%, slightly better than the 8% drop in HP's sales to consumers. So far, very similar numbers between the two vendors, with HP actually doing better than Dell in the quarter. So, why the market perception that Dell outperformed HP?

Read more

The Mainstreaming of UCS - Cisco Announces Microsoft SQL Server Alliance

Richard Fichera

Entering into a new competitive segment, especially one dominated by major players with well-staked out turf, requires a level of hyperbole, dramatic positioning and a differentiable product. Cisco has certainly achieved all this and more in the first two years of shipment of its UCS product, and shows no signs of fatigue to date.

However, Cisco’s announcement this week that it is now part of Microsoft’s Fast Track Data Warehouse and Fast Track OLTP program is a sign that UCS is also entering the mainstream of enterprise technology. The Microsoft Fast Track program, offering a set of reference architectures, system specification and sizing guides for both common usage scenarios for Microsoft SQL Server, is not new, nor is it in any way unique to Cisco. Fast Track includes Dell, HP, IBM, and Bull. The fact that Cisco will now get equal billing from Microsoft in this program is significant – it is the beginning of the transition from emerging fringe to mainstream , and an endorsement to anyone in the infrastructure business that Cisco is now appearing on the same stage as the major incumbents.

Will this represent a breakthrough revenue opportunity for Cisco? Probably not, since Microsoft will be careful not to play favorites and will certainly not risk alienating its major systems partners, but Cisco’s inclusion on this list is another incremental step in becoming a mainstream server supplier. Like the chicken soup that my grandmother used to offer, it can’t hurt.

Intel Shows the Way Forward, Demos 22 nm Parts with Breakthrough Semiconductor Design

Richard Fichera

What Intel said and showed

Intel has been publishing research for about a decade on what they call “3D Trigate” transistors, which held out the hope for both improved performance as well as power efficiency. Today Intel revealed details of its commercialization of this research in its upcoming 22 nm process as well as demonstrating actual systems based on 22 nm CPU parts.

The new products, under the internal name of “Ivy Bridge”, are the process shrink of the recently announced Sandy Bridge architecture in the next “Tock” cycle of the famous Intel “Tick-Tock” design methodology, where the “Tick” is a new optimized architecture and the “Tock” is the shrinking of this architecture onto then next generation semiconductor process.

What makes these Trigate transistors so innovative is the fact that they change the fundamental geometry of the semiconductors from a basically flat “planar” design to one with more vertical structure, earning them the description of “3D”. For users the concepts are simpler to understand – this new transistor design, which will become the standard across all of Intel’s products moving forward, delivers some fundamental benefits to CPUs implemented with them:

  • Leakage current is reduced to near zero, resulting in very efficient operation for system in an idle state.
  • Power consumption at equivalent performance is reduced by approximately 50% from Sandy Bridge’s already improved results with its 32 nm process.
Read more

HP And Oracle Customers React – Not Happy, But Coping

Richard Fichera

Since Oracle dropped their bombshell on HP and Itanium, I have fielded multiple emails and about a dozen inquiries from HP and Oracle customers wanting to discuss their options and plans. So far, there has been no general sense of panic, and the scenarios seem to be falling into several buckets:

  • The majority of Oracle DB/HP customers are not at the latest revision of Oracle, so they have a window within which to make any decisions, bounded on the high end by the time it will take them to make a required upgrade of their application plus DB stack past the current 11.2 supported Itanium release. For those customers still on Oracle release 9, this can be many years, while for those currently on 11.2, the next upgrade cycle will cause a dislocation. The most common application that has come up in inquiries is SAP, with Oracle’s own apps second.
  • Customers with other Oracle software, such as Hyperion, Peoplesoft, Oracle’s eBusiness Suite, etc., and other ISV software are often facing complicated constraints on their upgrades. In some cases decisions by the ISVs will drive the users toward upgrades they do not want to make. Several clients told me they will defer ISV upgrades to avoid being pushed into an unsupported version of the DB.
Read more

Egenera Lands HP As A Partner – A Win For Both

Richard Fichera

Egenera, arguably THE pioneer in what the industry is now calling converged infrastructure, has had a hard life. Early to market in 2000 with a solution that was approximately a decade ahead of its time, it offered an elegant abstraction of physical servers into what chief architect Maxim Smith described as “fungible and anonymous” resources connected by software defined virtual networks. Its interface was easy to use, allowing the definition of virtualized networks, NICs, servers with optional failover and pools of spare resources with a fluidity that has taken the rest of the industry almost 10 years to catch up to. Unfortunately this elegant presentation was chained to a completely proprietary hardware architecture, which encumbered the economics of x86 servers with an obsolete network fabric, expensive system controller and physical architecture (but it was the first vendor to include blue lights on its servers). The power of the PanManager software was enough to keep the company alive, but not enough to overcome the economics of the solution and put them on a fast revenue path, especially as emerging competitors began to offer partial equivalents at lower costs. The company is privately held and does not disclose revenues, but Forrester estimates it is still less than $100 M in annual revenues.

In approximately 2006, Egenera began the process of converting its product to a pure software offering capable of running on commodity server hardware and standard Ethernet switches. In subsequent years they have announced distribution arrangements with Fujitsu (an existing partner for their earlier products) and an OEM partnership with Dell, which apparently was not successful, since Dell subsequently purchased Scalent, an emerging software competitor. Despite this, Egenera claims that its software business is growing and has been a factor in the company’s first full year of profitability.

Read more

The Empire Strikes Back – Intel Reveals An Effective Low-Power And Micro Server Strategy

Richard Fichera

A lot has been written about potential threats to Intel’s low-power server hegemony, including discussions of threats from not only its perennial minority rival AMD but also from emerging non-x86 technologies such as ARM servers. While these are real threats, with potential for disrupting Intel’s position in the low power and small form factor server segment if left unanswered, Intel’s management has not been asleep at the wheel. As part of the rollout of the new Sandy Bridge architecture, Intel recently disclosed their platform strategy for what they are defining as “Micro Servers,” small single-socket servers with shared power and cooling to improve density beyond the generally accepted dividing line of one server per RU that separates “standard density” from “high density.” While I think that Intel’s definition is a bit myopic, mostly serving to attach a label to a well established category, it is a useful tool for segmenting low-end servers and talking about the relevant workloads.

Intel’s strategy revolves around introducing successive generations of its Sandy Bridge and future architectures embodied as Low Power (LP) and Ultra Low Power (ULP) products with promises of up to 2.2X performance per watt and 30% less actual power compared to previous generation equivalent x86 servers, as outlined in the following chart from Intel:

So what does this mean for Infrastructure & Operations professionals interested in serving the target loads for micro servers, such as:

  • Basic content delivery and web servers
  • Low-end dedicated server hosting
  • Email and basic SaaS delivery
Read more

Dell Delivers vStart – Ready To Run Virtual Infrastructure

Richard Fichera

Another Tier-1 Converged Infrastructure Option

The drum continues to beat for converged infrastructure products, and Dell has given it the latest thump with the introduction of vStart, a pre-integrated environment for VMware. Best thought of as a competitor to VCE, the integrated VMware, Cisco and EMC virtualization stack, vStart combines:

  • Dell PowerEdge R610 and R710 rack servers
  • Dell EqualLogic PS6000XV storage
  • Dell PowerConnect Ethernet switches
  • Preinstalled VMware (trial) software & Dell management extensions
  • Dell factory and onsite services
Read more

Intel Ups The Ante At The High End With New E7 CPUs

Richard Fichera

Bigger, Better, Faster Xeon CPUs

Intel today publicly announced its anticipated “Westmere EX” high end Westmere architecture server CPU as the E7, now part of a new family nomenclature encompassing entry (E3), midrange (E5), and high-end server CPUs (E7), and at first glance it certainly looks like it delivers on the promise of the Westmere architecture with enhancements that will appeal to buyers of high-end x86 systems.

The E7 in a nutshell:

  • 32 nm CPU with up to 10 cores, each with hyper threading, for up to 20 threads per socket.
  •  Intel claims that the system-level performance will be up to 40% higher than the prior generation 8-core Nehalem EX. Notice that the per-core performance improvement is modest (although Intel does offer a SKU with 8 cores and a slightly higher clock rate for those desiring ultimate performance per thread).
  • Improvements in security with Intel Advanced Encryption Standard New Instruction (AES-NI) and Intel Trusted Execution Technology (Intel TXT).
  • Major improvements in power management by incorporating the power management capabilities from the Xeon 5600 CPUs, which include more aggressive P states, improved idle power operation, and the ability to separately reduce individual core power setting depending on workload, although to what extent this is supported on systems that do not incorporate Intel’s Node Manager software is not clear.
Read more

Oracle Says No To Itanium – Embarrassment For Intel, Big Problem For HP

Richard Fichera

Oracle announced today that it is going to cease development for Itanium across its product line, stating that itbelieved, after consultation with Intel management, that x86 was Intel’s strategic platform. Intel of course responded with a press release that specifically stated that there were at least two additional Itanium products in active development – Poulsen (which has seen its initial specifications, if not availability, announced), and Kittson, of which little is known.

This is a huge move, and one that seems like a kick carefully aimed at the you know what’s of HP’s Itanium-based server business, which competes directly with Oracle’s SPARC-based Unix servers. If Oracle stays the course in the face of what will certainly be immense pressure from HP, mild censure from Intel, and consternation on the part of many large customers, the consequences are pretty obvious:

  • Intel loses prestige, credibility for Itanium, and a potential drop-off of business from its only large Itanium customer. Nonetheless, the majority of Intel’s server business is x86, and it will, in the end, suffer only a token loss of revenue. Intel’s response to this move by Oracle will be muted – public defense of Itanium, but no fireworks.
Read more

ARM Servers - Calxeda Opens The Kimono For A Tantalizing Tease

Richard Fichera

Calxeda, one of the most visible stealth mode startups in the industry, has finally given us an initial peek at the first iteration of its server plans, and they both meet our inflated expectations from this ARM server startup and validate some of the initial claims of ARM proponents.

While still holding their actual delivery dates and details of specifications close to their vest, Calxeda did reveal the following cards from their hand:

  • The first reference design, which will be provided to OEM partners as well as delivered directly to selected end users and developers, will be based on an ARM Cortex A9 quad-core SOC design.
  • The SOC, as Calxeda will demonstrate with one of its reference designs, will enable OEMs to design servers as dense as 120 ARM quad-core nodes (480 cores) in a 2U enclosure, with an average consumption of about 5 watts per node (1.25 watts per core) including DRAM.
  • While not forthcoming with details about the performance, topology or protocols, the SOC will contain an embedded fabric for the individual quad-core SOC servers to communicate with each other.
  • Most significantly for prospective users, Calxeda is claiming, and has some convincing models to back up these claims, that they will provide a performance advantage of 5X to 10X the performance/watt and (even higher when price is factored in for a metric of performance/watt/$) of any products they expect to see when they bring the product to market.
Read more