Extremes of x86 Servers Illustrate the Depth of the Ecosystem and the Diversity of Workloads

Richard Fichera

I’ve recently been thinking a lot about application-specific workloads and architectures (Optimize Scalalable Workload-Specific Infrastructure for Customer Experiences), and it got me to thinking about the extremes of the server spectrum – the very small and the very large as they apply to x86 servers. The range, and the variation in intended workloads is pretty spectacular as we diverge from the mean, which for the enterprise means a 2-socket Xeon server, usually in 1U or 2U form factors.

At the bottom, we find really tiny embedded servers, some with very non-traditional packaging. My favorite is probably the technology from Arnouse digital technology, a small boutique that produces computers primarily for military and industrial ruggedized environments.

Slightly bigger than a credit card, their BioDigital server is a rugged embedded server with up to 8 GB of RAM and 128 GB SSD and a very low power footprint. Based on an Atom-class CPU, thus is clearly not the choice for most workloads, but it is an exemplar of what happens when the workload is in a hostile environment and the computer maybe needs to be part of a man-carried or vehicle-mounted portable tactical or field system. While its creators are testing the waters for acceptance as a compute cluster with up to 4000 of them mounted in a standard rack, it’s likely that these will remain a niche product for applications requiring the intersection of small size, extreme ruggedness and complete x86 compatibility, which includes a wide range of applications from military to portable desktop modules.

Read more

HP Hooks Up With Foxcon for Volume Servers

Richard Fichera

Yesterday HP announced that it will be entering into a “non-equity joint venture” (think big strategic contract of some kind with a lot of details still in flight) to address the large-scale web services providers. Under the agreement, Foxcon will design and manufacture and HP will be the primary sales channel for new servers targeted at hyper scale web service providers. The new servers will be branded HP but will not be part of the current ProLiant line of enterprise servers, and HP will deliver additional services along with hardware sales.

Why?

The motivation is simple underneath all the rhetoric. HP has been hard-pressed to make decent margins selling high-volume low-cost and no-frills servers to web service providers, and has been increasingly pressured by low-cost providers. Add to that the issue of customization, which these high-volume customers can easily get from smaller and more agile Asian ODMs and you have a strategic problem. Having worked at HP for four years I can testify to the fact that HP, a company maniacal about quality but encumbered with an effective but rigid set of processes around bringing new products to market, has difficulty rapidly turning around a custom design, and has a cost structure that makes it difficult to profitably compete for deals with margins that are probably in the mid-teens.

Enter the Hon Hai Precision Industry Co, more commonly known as Foxcon. A longtime HP partner and widely acknowledged as one of the most efficient and agile manufacturing companies in the world, Foxcon brings to the table the complementary strengths to match HP – agile design, tightly integrated with its manufacturing capabilities.

Who does what?

Read more

IBM Announces Next Generation POWER Systems – Big Win for AIX Users, New Option for Linux

Richard Fichera

On April 23, IBM rolled out the long-awaited POWER8 CPU, the successor to POWER7+, and given the extensive pre-announcement speculation, the hardware itself was no big surprise (the details are fascinating, but not suitable for this venue), offering an estimated  30 - 50% improvement in application performance over the latest POWER7+, with potential for order of magnitude improvements with selected big data and analytics workloads. While the technology is interesting, we are pretty numb to the “bigger, better, faster” messaging that inevitably accompanies new hardware announcements, and the real impact of this announcement lies in its utility for current AIX users and IBM’s increased focus on Linux and its support of the OpenPOWER initiative.

Technology

OK, so we’re numb, but it’s still interesting. POWER8 is an entirely new processor generation implemented in 22 nm CMOS (the same geometry as Intel’s high-end CPUs). The processor features up to 12 cores, each with up to 8 threads, and a focus on not only throughput but high performance per thread and per core for low-thread-count applications. Added to the mix is up to 1 TB of memory per socket, massive PCIe 3 I/O connectivity and Coherent Accelerator Processor Interface (CAPI), IBM’s technology to deliver memory-controller-based access for accelerators and flash memory in POWER systems. CAPI figures prominently in IBM’s positioning of POWER as the ultimate analytics engine, with the announcement profiling the performance of a configuration using 40 TB of CAPI-attached flash for huge in-memory analytics at a fraction of the cost of a non-CAPI configuration.[i]

A Slam-dunk for AIX users and a new play for Linux

Read more

Cisco UCS at Five Years – Successful Disruption and a New Status-Quo

Richard Fichera

March Madness – Five Years Ago

It was five years ago, March 2009, when Cisco formally announced  “Project California,” its (possibly intentionally) worst-kept secret, as Cisco Unified Computing System. At the time, I was working at Hewlett Packard, and our collective feelings as we realized that Cisco really did intend to challenge us in the server market were a mixed bag. Some of us were amused at their presumption, others were concerned that there might be something there, since we had odd bits and pieces of intelligence about the former Nuova, the Cisco spin-out/spin-in that developed UCS. Most of us were convinced that they would have trouble running a server business at margins we knew would be substantially lower than their margins in their core switch business. Sitting on top of our shiny, still relatively new HP c-Class BladeSystem, which had overtaken IBM’s BladeCenter as the leading blade product, we were collectively unconcerned, as well as puzzled about Cisco’s decision to upset a nice stable arrangement where IBM, HP and Dell sold possibly a Billion dollars’ worth of Cisco gear between them.

Fast Forward

Five years later, HP is still number one in blade server units and revenue, but Cisco appears to be now number two in blades, and closing in on number three world-wide in server sales as well. The numbers are impressive:

·         32,000 net new customers in five years, with 14,000 repeat customers

·         Claimed $2 Billion+ annual run-rate

·         Order growth rate claimed in “mid-30s” range, probably about three times the growth rate of any competing product line.

Lessons Learned

Read more

Intel Bumps up High-End Servers with New Xeon E7 V2 - A Long Awaited and Timely Leap

Richard Fichera

The long draught at the high-end

It’s been a long wait, about four years if memory serves me well, since Intel introduced the Xeon E7, a high-end server CPU targeted at the highest performance per-socket x86, from high-end two socket servers to 8-socket servers with tons of memory and lots of I/O. In the ensuing four years (an eternity in a world where annual product cycles are considered the norm), subsequent generations of lesser Xeons, most recently culminating in the latest generation 22 nm Xeon E5 V2 Ivy Bridge server CPUs, have somewhat diluted the value proposition of the original E7.

So what is the poor high-end server user with really demanding single-image workloads to do? The answer was to wait for the Xeon E7 V2, and at first glance, it appears that the wait was worth it. High-end CPUs take longer to develop than lower-end products, and in my opinion Intel made the right decision to skip the previous generation 22nm Sandy Bridge architecture and go to Ivy Bridge, it’s architectural successor in the Intel “Tick-Tock” cycle of new process, then new architecture.

What was announced?

The announcement was the formal unveiling of the Xeon E7 V2 CPU, available in multiple performance bins with anywhere from 8 to 15 cores per socket. Critical specifications include:

  • Up to 15 cores per socket
  • 24 DIMM slots, allowing up to 1.5 TB of memory with 64 GB DIMMs
  • Approximately 4X I/O bandwidth improvement
  • New RAS features, including low-level memory controller modes optimized for either high-availability or performance mode (BIOS option), enhanced error recovery and soft-error reporting
Read more

IBM is First Mover with Disruptive Flash Memory Technology on New x6 Servers

Richard Fichera

This week, IBM announced its new line of x86 servers, and included among the usual incremental product improvements is a performance game-changer called eXFlash. eXFlash is the first commercially available implantation of the MCS architecture announced last year by Diablo Technologies. The MCS architecture, and IBM’s eXFlash offering in particular, allows flash memory to be embedded on the system as close to the CPU as main memory, with latencies substantially lower than any other available flash options, offering better performance at a lower solution cost than other embedded flash solutions. Key aspects of the announcement include:

■  Flash DIMMs offer scalable high performance. Write latency (a critical metric) for IBM eXFlash will be in the 5 to 10 microsecond range, whereas best-of-breed competing mezzanine card and PCIe flash can only offer 15 to 20 microseconds (and external flash storage is slower still). Additionally, since the DIMMs are directly attached to the memory controller, flash I/O does not compete with other I/O on the system I/O hub and PCIe subsystem, improving overall system performance for heavily-loaded systems. Additional benefits include linear performance scalability as the number of DIMMs increase and optional built-in hardware mirroring of DIMM pairs.

■  eXFlash DIMMs are compatible with current software. Part of the magic of MCS flash is that it appears to the OS as a standard block-mode device, so all existing block-mode software will work, including applications, caching and tiering or general storage management software. For IBM users, compatibility with IBM’s storage management and FlashCache Storage Accelerator solutions is guaranteed. Other vendors will face zero to low effort in qualifying their solutions.

Read more

2014 Server and Data Center Predictions

Richard Fichera

As the new year looms, thoughts turn once again to our annual reading of the tea leaves, in this case focused on what I see coming in server land. We’ve just published the full report, Predictions for 2014: Servers & Data Centers, but as teaser, here are a few of the major highlights from the report:

1.      Increasing choices in form factor and packaging – I&O pros will have to cope with a proliferation of new form factors, some optimized for dense low-power cloud workloads, some for general purpose legacy IT, and some for horizontal VM clusters (or internal cloud if you prefer). These will continue to appear in an increasing number of variants.

2.      ARM – Make or break time is coming, depending on the success of coming 64-bit ARM CPU/SOC designs with full server feature sets including VM support.

3.      The beat goes on – Major turn of the great wheel coming for server CPUs in early 2014.

4.      Huge potential disruption in flash architecture – Introduction of flash in main memory DIMM slots has the potential to completely disrupt how flash is used in storage tiers, and potentially can break the current storage tiering model, initially physically with the potential to ripple through memory architectures.

Read more

Intel Lays Out Future Data Center Strategy - Serious Focus on Emerging Opportunities

Richard Fichera

Yesterday Intel had a major press and analyst event in San Francisco to talk about their vision for the future of the data center, anchored on what has become in many eyes the virtuous cycle of future infrastructure demand – mobile devices and “the Internet of things” driving cloud resource consumption, which in turn spews out big data which spawns storage and the requirement for yet more computing to analyze it. As usual with these kinds of events from Intel, it was long on serious vision, and strong on strategic positioning but a bit parsimonious on actual future product information with a couple of interesting exceptions.

Content and Core Topics:

No major surprises on the underlying demand-side drivers. The the proliferation of mobile device, the impending Internet of Things and the mountains of big data that they generate will combine to continue to increase demand for cloud-resident infrastructure, particularly servers and storage, both of which present Intel with an opportunity to sell semiconductors. Needless to say, Intel laced their presentations with frequent reminders about who was the king of semiconductor manufacturingJ

Read more

Systems of Engagement vs Systems of Reference – Core Concept for Infrastructure Architecture

Richard Fichera

My Forrester colleagues Ted Schadler and John McCarthy have written about the differences between Systems of Reference (SoR) and Systems of Engagement (SoE) in the customer-facing systems and mobility, but after further conversations with some very smart people at IBM, I think there are also important reasons for infrastructure architects to understand this dichotomy. Scalable and flexible systems of engagement, engagement, built with the latest in dynamic web technology and the back-end systems of record, highly stateful usually transactional systems designed to keep track of the “true” state of corporate assets are very different animals from an infrastructure standpoint in two fundamental areas:

Suitability to cloud (private or public) deployment – SoE environments, by their nature, are generally constructed using horizontally scalable technologies, generally based on some level of standards including web standards, Linux or Windows OS, and some scalalable middleware that hides the messy details of horizontally scaling a complex application. In addition, the workloads are generally highly parallel, with each individual interaction being of low value. This characteristic leads to very different demands on the necessity for consistency and resiliency.

Read more

AMD Quietly Rolls Out hUMA – Potential Game-Changer for Parallel Computing

Richard Fichera

Background  High Performance Attached Processors Handicapped By Architecture

The application of high-performance accelerators, notably GPUs, GPGPUs (APUs in AMD terminology) to a variety of computing problems has blossomed over the last decade, resulting in ever more affordable compute power for both horizon and mundane problems, along with growing revenue streams for a growing industry ecosystem. Adding heat to an already active mix, Intel’s Xeon Phi accelerators, the most recent addition to the GPU ecosystem, have the potential to speed adoption even further due to hoped-for synergies generated by the immense universe of x86 code that could potentially run on the Xeon Phi cores.

However, despite any potential synergies, GPUs (I will use this term generically to refer to all forms of these attached accelerators as they currently exist in the market) suffer from a fundamental architectural problem — they are very distant, in terms of latency, from the main scalar system memory and are not part of the coherent memory domain. This in turn has major impacts on performance, cost, design of the GPUs, and the structure of the algorithms:

  • Performance — The latency for memory accesses generally dictated by PCIe latencies, which while much improved over previous generations, are a factor of 100 or more longer than latency from coherent cache or local scalar CPU memory. While clever design and programming, such as overlapping and buffering multiple transfers can hide the latency in a series of transfers, it is difficult to hide the latency for an initial block of data. Even AMD’s integrated APUs, in which the GPU elements are on a common die, do not share a common memory space, and explicit transfers are made in and out of the APU memory.
Read more