The Great Divide: MDM and Data Quality Solution Selection

Michele Goetz

I just came back from a Product Information Management (PIM) event this week had had a lot of discussions about how to evaluate vendors and their solutions.  I also get a lot of inquiries on vendor selection and while a lot of the questions center around the functionality itself, how to evaluate is also a key point of discussion.  What peaked my interest on this subject is that IT and the Business have very different objectives in selecting a solution for MDM, PIM, and data quality.  In fact, it can often get contentious when IT and the Business don't agree on the best solution. 

General steps to purchase a solution seem pretty consistent: create a short list based on the Forrester Wave and research, conduct an RFI, narrow down to 2-3 vendors for an RFP, make a decision.  But, the devil seems to be in the details.  

  • Is a proof of concept required?
  • How do you make a decision when vendors solutions appear the same? Are they really the same?
  • How do you put pricing into context? Is lowest really better?
  • What is required to know before engaging with vendors to identify fit and differentiation? 
  • When does meeting business objectives win out over fit in IT skills and platform consistency?
Read more

Master Data Management Does Not Equal The Single Source Of Truth

Michele Goetz

The number one reason I hear from IT organizations for why they want to embark on MDM is for consolidation or integration of systems. Then, the first question I get, how do they get buy-in from the business to pay for it?

My first reaction is to cringe because the implication is that MDM is a data integration tool and the value is the matching capabilities. While matching is a significant capability, MDM is not about creating a golden record or a single source of truth.

My next reaction is that IT missed the point that the business wants data to support a system of engagement. The value of MDM is to be able to model and render a domain to fit a system of engagement. Until you understand and align to that, your MDM effort will not support the business and you won’t get the funding. If you somehow do get the funding, you won’t be able to appropriately select the MDM tool that is right for the business need, thus wasting time, money, and resources.

Here is why I am not a fan of the “single source of truth” mantra. A person is not one-dimensional; they can be a parent, a friend, or a colleague, and each has different motivations and requirements depending on the environment. A product is as much about the physical aspect as it is about the pricing, message, and sales channel it is sold through. Or, it is also faceted by the fact that it is put together from various products and parts from partners. In no way is a master entity unique or has a consistency depending on what is important about the entity in a given situation. What MDM provides are definitions and instructions on the right data to use in the right engagement. Context is a key value of MDM.

Read more

Data Quality Reboot Series For Big Data: Part 1 Master Data

Michele Goetz

What data do you trust? Increasingly, business stakeholders and data scientists trust the information hidden in the bowels of big data. Yet, how data is mined mostly circumvents existing data governance and data architecture due to speed of insight required and support data discovery over repeatable reporting.

The key to this challenge is a data quality reboot: rethink what matters, and rethink data governance.

Part 1 of our Data Quality Reboot Series is to rethink master data management (MDM) in a big data world.

Current thinking: Master data as a single data entity. A common theme I hear from clients is that master data is about the linked data elements for a single record. No duplication or variation exists to drive consistency and uniqueness. Master data in the current thinking represents a defined, named entity (customer, supplier, product, etc.). This is a very static view of master data and does not account for the various dimensions required for what is important within a particular use case. We typically see this approach tied tightly to an application (customer resource management, enterprise resource management) for a particular business unit (marketing, finance, product management, etc.). It may have been the entry point for MDM initiatives, and it allowed for smaller scope tangible wins. But, it is difficult to expand that master data to other processes, analysis, and distribution points. Master data as a static entity only takes you so far, regardless of whether big data is incorporated into the discussion or not.

Read more

Forrester Wave For Master Data Management — Enterprise, Big Data, Data Governance

Michele Goetz

As the new analyst on the block at Forrester, the first question everyone is asking is, “What research do you have planned?” Just to show that I’m up for the task, rather than keeping it simple with a thoughtful report on data quality best practices or a maturity assessment on data management, I thought I’d go for broke and dive into the master data management (MDM) landscape. Some might call me crazy, but this is more than just the adrenaline rush that comes from doing such a project. In over 20 inquiries with clients in the past month, questions show increased sophistication in how managing master data can strategically contribute to the business.

What do I mean by this?

Number 1: Clients want to know how to bring together transitional data (structured) and content (semi-structured and unstructured) to understand the customer experience, improve customer engagement, and maximize the value of the customer. Understanding customer touch points across social media, e-commerce, customer service, and content consumption provides a single customer view that lets you customize your interactions and be highly relevant to your customer. MDM is at the heart of bringing this view together.

Number 2: Clients have begun to analyze big data within side projects as a way to identify opportunities for the business. This intelligence has reached the point that clients are now exploring how to distribute and operationalize these insights throughout the organization. MDM is the point that will align discoveries within the governance of master data for context and use.

Read more

Process Data Management: Like Your Brain And Your Heart, BPM and MDM Can’t Survive Independently