2014 Server and Data Center Predictions

Richard Fichera

As the new year looms, thoughts turn once again to our annual reading of the tea leaves, in this case focused on what I see coming in server land. We’ve just published the full report, Predictions for 2014: Servers & Data Centers, but as teaser, here are a few of the major highlights from the report:

1.      Increasing choices in form factor and packaging – I&O pros will have to cope with a proliferation of new form factors, some optimized for dense low-power cloud workloads, some for general purpose legacy IT, and some for horizontal VM clusters (or internal cloud if you prefer). These will continue to appear in an increasing number of variants.

2.      ARM – Make or break time is coming, depending on the success of coming 64-bit ARM CPU/SOC designs with full server feature sets including VM support.

3.      The beat goes on – Major turn of the great wheel coming for server CPUs in early 2014.

4.      Huge potential disruption in flash architecture – Introduction of flash in main memory DIMM slots has the potential to completely disrupt how flash is used in storage tiers, and potentially can break the current storage tiering model, initially physically with the potential to ripple through memory architectures.

Read more

Mobile Mapping: Nokia Prepares For The Afterlife

Katyayan Gupta

At the recently concluded Tizen developer conference in South Korea, Nokia announced that it has licensed its maps and related functionality to the Tizen ecosystem. While no phone or tablet running the Tizen OS has yet launched, device manufacturers like Samsung, Huawei, and Fujitsu are backing it.

Mobile handset manufacturer Jolla, whose first phone ships on November 27, also announced that it has licensed HERE’s positioning services and map technology for its Sailfish OS. We expect more handset manufacturers to build devices for Tizen and Sailfish over the next 12 to 18 months, as both are open source and can run Android apps.

In my opinion, two key factors make Nokia HERE maps a tough competitor for Google and Apple:

Read more

Intel Lays Out Future Data Center Strategy - Serious Focus on Emerging Opportunities

Richard Fichera

Yesterday Intel had a major press and analyst event in San Francisco to talk about their vision for the future of the data center, anchored on what has become in many eyes the virtuous cycle of future infrastructure demand – mobile devices and “the Internet of things” driving cloud resource consumption, which in turn spews out big data which spawns storage and the requirement for yet more computing to analyze it. As usual with these kinds of events from Intel, it was long on serious vision, and strong on strategic positioning but a bit parsimonious on actual future product information with a couple of interesting exceptions.

Content and Core Topics:

No major surprises on the underlying demand-side drivers. The the proliferation of mobile device, the impending Internet of Things and the mountains of big data that they generate will combine to continue to increase demand for cloud-resident infrastructure, particularly servers and storage, both of which present Intel with an opportunity to sell semiconductors. Needless to say, Intel laced their presentations with frequent reminders about who was the king of semiconductor manufacturingJ

Read more

AMD Quietly Rolls Out hUMA – Potential Game-Changer for Parallel Computing

Richard Fichera

Background  High Performance Attached Processors Handicapped By Architecture

The application of high-performance accelerators, notably GPUs, GPGPUs (APUs in AMD terminology) to a variety of computing problems has blossomed over the last decade, resulting in ever more affordable compute power for both horizon and mundane problems, along with growing revenue streams for a growing industry ecosystem. Adding heat to an already active mix, Intel’s Xeon Phi accelerators, the most recent addition to the GPU ecosystem, have the potential to speed adoption even further due to hoped-for synergies generated by the immense universe of x86 code that could potentially run on the Xeon Phi cores.

However, despite any potential synergies, GPUs (I will use this term generically to refer to all forms of these attached accelerators as they currently exist in the market) suffer from a fundamental architectural problem — they are very distant, in terms of latency, from the main scalar system memory and are not part of the coherent memory domain. This in turn has major impacts on performance, cost, design of the GPUs, and the structure of the algorithms:

  • Performance — The latency for memory accesses generally dictated by PCIe latencies, which while much improved over previous generations, are a factor of 100 or more longer than latency from coherent cache or local scalar CPU memory. While clever design and programming, such as overlapping and buffering multiple transfers can hide the latency in a series of transfers, it is difficult to hide the latency for an initial block of data. Even AMD’s integrated APUs, in which the GPU elements are on a common die, do not share a common memory space, and explicit transfers are made in and out of the APU memory.
Read more

HP Launches First Project Moonshot Server – The Shape of Things to Come?

Richard Fichera

 

Overview - Moonshot Takes Off

HP today announced the Moonshot 1500 server, their first official volume product in the Project Moonshot server product family (the initial Redstone, a Calxeda ARM-based server, was only available in limited quantities as a development system), and it represents both a significant product today and a major stake in the ground for future products, both from HP and eventually from competitors. It’s initial attractions – an extreme density low power x86 server platform for a variety of low-to-midrange CPU workloads – hides the fact that it is probably a blueprint for both a family of future products from HP as well as similar products from other vendors.

Geek Stuff – What was Announced

The Moonshot 1500 is a 4.3U enclosure that can contain up to 45 plug-in server cartridges, each one a complete server node with a dual-core Intel Atom 1200 CPU, up to 8 GB of memory and a single disk or SSD device, up to 1 TB, and the servers share common power supplies and cooling. But beyond the density, the real attraction of the MS1500 is its scalable fabric and CPU-agnostic architecture. Embedded in the chassis are multiple fabrics for storage, management and network giving the MS1500 (my acronym, not an official HP label) some of the advantages of a blade server without the advanced management capabilities. At initial shipment, only the network and management fabric will be enabled by the system firmware, with each chassis having up two Gb Ethernet switches (technically they can be configured with one, but nobody will do so), allowing the 45 servers to share uplinks to the enterprise network.

Read more

Open Compute Project – Rising Relevance And More Stakeholders

Richard Fichera

Background

Today’s announcements at the Open Compute Project (OCP) 2013 Summit could be considered as tangible markers for the OCP crossing the line into real relevance as an important influence on emerging hyper-scale and cloud computing as well as having a potential bleed-through into the world of enterprise data centers and computing. This is obviously a subjective viewpoint – there is no objective standard for relevance, only post-facto recognition that something was important or not. But in this case I’m going to stick my neck out and predict that OCP will have some influence and will be a sticky presence in the industry for many years.

Even if their specs (which look generally quite good) do not get picked up verbatim, they will act as an influence on major vendors who will, much like the auto industry in the 1970s, get the message that there is a market for economical “low-frills” alternatives.

Major OCP Initiatives

To date, OCP has announced a number of useful hardware specifications, including:

Read more

Intel Makes Its Mark In The HPC Segment With Xeon Phi

Richard Fichera

Background

With a  couple of months' perspective, I’m pretty convinced that Intel has made a potentially disruptive entry in the market for programmable computational accelerators, often referred to as GPGPUs (General Purpose Graphics Processing Units) in deference to the fact that the market leaders, NVIDIA and AMD, have dominated the segment with parallel computational units derived from high-end GPUs. In late 2012, Intel, referring to the architecture as MIC (Many Independent Cores) introduced the Xeon Phi product, the long-awaited productization of the development project that was known internally (and to the rest of the world as well) as Knight’s Ferry, a MIC coprocessor with up to 62 modified Xeon cores implemented in its latest 22 nm process.

Why Xeon Phi Is Important

Read more

HP And Intel Announce Poulson And New Integrity Servers – Great News For A Select Few

Richard Fichera

On Tuesday November 8, after more than a year of pre-announcement disclosures that eventually left very little to the imagination, Intel finally announced the Itanium 9500, formerly known as Poulson. Added to this was the big surprise of HP announcing a refresh of its current line of Integrity servers, from blades to the large Superdome servers, with the new Itanium 9500.

As noted in an earlier post, the Itanium 9500 offers considerable performance improvements over its predecessors, and instantiated in HP’s new Integrity line it is positioned as delivering between 2X and 3X the performance per socket as previous Itanium 9300 (Tukwilla) systems at approximately the same price. For those remaining committed to Itanium and its attendant OS platforms, notably HP-UX, this is unmitigated good news. The fly in the ointment (I have never seen a fly in any ointment, but it does sound gross), of course, is HP’s dispute with Oracle. Despite the initial judgment in HP’s favor, the trial is a) not over yet, and b) Oracle has already filed for an early appeal of the initial verdict, which would ordinarily have to wait until the second phase of the trial, scheduled for next year, to finish. The net takeaway is that Oracle’s future availability on Itanium and HP-UX is not yet assured, so we really cannot advise the large number of Oracle users who will require Oracle 12 and later versions to relax yet.

Read more

Tectonic Shift In The ARM Ecosystem — AMD Announces ARM Intentions

Richard Fichera

Earlier this week, in conjunction with ARM Holdings plc’s announcement of the upcoming Cortex A53 and A57, full 64-bit CPU implementations based on the ARM V8 specification, AMD also announced that it would be designing and selling SOC (System On a Chip) products based on this technology in 2014, roughly coinciding with availability of 64-bit parts from ARM and other partners.

This is a major event in the ARM ecosystem. AMD, while much smaller than Intel, is still a multi-billion-dollar enterprise, and for the second largest vendor of x86 chips to also throw its hat into the ARM ecosystem and potentially compete with its own mainstream server and desktop CPU business is an aggressive move on the part of AMD management that carries some risk and much potential advantage.

Reduced to its essentials, what AMD announced (and in some cases hinted at):

  • Intention to produce A53/A57 SOC modules for multiple server segments. There was no formal statement of intentions regarding tablet/mobile devices, but it doesn’t take a rocket scientist to figure out that AMD wants a piece of this market, and ARM is a way to participate.
  • The announcement is wider that just the SOC silicon. AMD also hinted at making a range of IP, including its fabric architecture from the SeaMicro architecture, available in the form of “reusable IP blocks.” My interpretation is that it intends to make the fabric, reference architectures, and various SOCs available to its hardware system partners.
Read more

AMD Acquires SeaMicro — Big Bet On Architectural Shift For Servers

Richard Fichera

[For some reason this has been unpublished since April — so here it is well after AMD announced its next spin of the SeaMicro product.]

At its recent financial analyst day, AMD indicated that it intended to differentiate itself by creating products that were advantaged in niche markets, with specific mention, among other segments, of servers, and to generally shake up the trench warfare that has had it on the losing side of its lifelong battle with Intel (my interpretation, not AMD management’s words). Today, at least for the server side of the business, it made a move that can potentially offer it visibility and differentiation by acquiring innovative server startup SeaMicro.

SeaMicro has attracted our attention since its appearance (blog post 1, blog post 2) with its innovative architecture that dramatically reduces power and improves density by sharing components like I/O adapters, disks, and even BIOS over a proprietary fabric. The irony here is that SeaMicro came to market with a tight alignment with Intel, who at one point even introduced a special dual-core packaging of its Atom CPU to allow SeaMicro to improve its density and power efficiency. Most recently SeaMicro and Intel announced a new model that featured Xeon CPUs to address the more mainstream segments that were not a part of SeaMicro’s original Atom-based offering.

Read more