IBM Amps up the Mainframe and Aggressively Targets Mobile Workloads with new z13 Announcement

Richard Fichera

On one level, IBM’s new z13, announced last Wednesday in New York, is exactly what the mainframe world has been expecting for the last two and a half years – more capacity (a big boost this time around – triple the main memory, more and faster cores, more I/O ports, etc.), a modest boost in price performance, and a very sexy cabinet design (I know it’s not really a major evaluation factor, but I think IBM’s industrial design for its system enclosures for Flex System, Power and the z System is absolutely gorgeous, should be in the MOMA*). IBM indeed delivered against these expectations, plus more. In this case a lot more.

In addition to the required upgrades to fuel the normal mainframe upgrade cycle and its reasonably predictable revenue, IBM has made a bold but rational repositioning of the mainframe as a core platform for the workloads generated by mobile transactions, the most rapidly growing workload across all sectors of the global economy. What makes this positioning rational as opposed to a pipe-dream for IBM is an underlying pattern common to many of these transactions – at some point they access data generated by and stored on a mainframe. By enhancing the economics of the increasingly Linux-centric processing chain that occurs before the call for the mainframe data, IBM hopes to foster the migration of these workloads to the mainframe where its access to the resident data will be more efficient, benefitting from inherently lower latency for data access as well as from access to embedded high-value functions such as accelerators for inline analytics. In essence, IBM hopes to shift the center of gravity for mobile processing toward the mainframe and away from distributed x86 Linux systems that they no longer manufacture.

Read more

Mainframe Futures – Reading the Tea Leaves for Future Investments

Richard Fichera

I’ve been getting a steady trickle of inquires this year about the future of the mainframe from our enterprise clients. Most of them are more or less in the form of “I have a lot of stuff running on mainframes. Is this a viable platform for the next decade or is IBM going to abandon them.” I think the answer is that the platform is secure, and in the majority of cases the large business-critical workloads that are currently on the mainframe probably should remain on the mainframes. In the interests of transparency I’ve tried to lay out my reasoning below so that you can see if it applies to your own situation.

How Big is the Mainframe LOB?

It's hard to get exact figures for the mainframe contributions to IBM's STG (System & Technology Group) total revenues, but the data they have shared shows that their mainframe revenues seem to have recovered from the declines of previous quarters and at worst flattened. Because the business is inherently somewhat cyclical, I would expect that the next cycle of mainframes, rumored to be arriving next year, should give them a boost similar to the last major cycle, allowing them to show positive revenues next year.

Read more

Bare Metal Clouds – Performance and Isolation Drive Consideration

Richard Fichera

I’ve been talking to a number of users and providers of bare-metal cloud services, and am finding the common threads among the high-profile use cases both interesting individually and starting to connect some dots in terms of common use cases for these service providers who provide the ability to provision and use dedicated physical servers with very similar semantics to the common VM IaaS cloud – servers that can be instantiated at will in the cloud, provisioned with a variety of OS images, be connected to storage and run applications. The differentiation for the customers is in behavior of the resulting images:

  • Deterministic performance – Your workload is running on a dedicated resource, so there is no question of any “noisy neighbor” problem, or even of sharing resources with otherwise well-behaved neighbors.
  • Extreme low latency – Like it or not, VMs, even lightweight ones, impose some level of additional latency compared to bare-metal OS images. Where this latency is a factor, bare-metal clouds offer a differentiated alternative.
  • Raw performance – Under the right conditions, a single bare-metal server can process more work than a collection of VMs, even when their nominal aggregate performance is similar. Benchmarking is always tricky, but several of the bare metal cloud vendors can show some impressive comparative benchmarks to prospective customers.
Read more

Shifting Sands – Changing Alliances Underscore the Dynamism of the Infrastructure Systems Market

Richard Fichera

There is always a tendency to regard the major players in large markets as being a static background against which the froth of smaller companies and the rapid dance of customer innovation plays out. But if we turn our lens toward the major server vendors (who are now also storage and networking as well as software vendors), we see that the relatively flat industry revenues hide almost continuous churn. Turn back the clock slightly more than five years ago, and the market was dominated by three vendors, HP, Dell and IBM. In slightly more than five years, IBM has divested itself of highest velocity portion of its server business, Dell is no longer a public company, Lenovo is now a major player in servers, Cisco has come out of nowhere to mount a serious challenge in the x86 server segment, and HP has announced that it intends to split itself into two companies.

And it hasn’t stopped. Two recent events, the fracturing of the VCE consortium and the formerly unthinkable hook-up of IBM and Cisco illustrate the urgency with which existing players are seeking differential advantage, and reinforce our contention that the whole segment of converged and integrated infrastructure remains one of the active and profitable segments of the industry.

EMC’s recent acquisition of Cisco’s interest in VCE effectively acknowledged what most customers have been telling us for a long time – that VCE had become essentially an EMC-driven sales vehicle to sell storage, supported by VMware (owned by EMC) and Cisco as a systems platform. EMC’s purchase of Cisco’s interest also tacitly acknowledges two underlying tensions in the converged infrastructure space:

Read more

Dell Introduces FX system - the Shape of Infrastructure to Come?

Richard Fichera

Dell today announced its new FX system architecture, and I am decidedly impressed.

Dell FX is a 2U flexible infrastructure building block that allows infrastructure architects to compose an application-appropriate server and storage infrastructure out of the following set of resources:

  • Multiple choices of server nodes, ranging from multi-core Atom to new Xeon E5 V3 servers. With configurations ranging from 2 to 16 server nodes per enclosure, there is pretty much a configuration point for most mainstream applications.
  • A novel flexible method of mapping disks from up to three optional disk modules, each with 16 drives - the mapping, controlled by the onboard management, allows each server to appear as if the disk is locally attached DASD, so no changes are needed in any software that thinks it is accessing local storage. A very slick evolution in storage provisioning.
  • A set of I/O aggregators for consolidating Ethernet and FC I/O from the enclosure.

All in all, an attractive and flexible packaging scheme for infrastructure that needs to be tailored to specific combinations of server, storage and network configurations. Probably an ideal platform to support the Nutanix software suite that Dell is reselling as well. My guess is that other system design groups are thinking along these lines, but this is now a pretty unique package, and merits attention from infrastructure architects.

Forrester clients, I've published a Quick Take report on this, Quick Take: Dell's FX Architecture Holds Promise To Power Modern Services

IBM Sheds Yet Another Hardware Business - Pays To Get Rid Of Semiconductor Fabrication

Richard Fichera
While the timing of the event comes as a surprise, the fact that IBM has decided to unload its technically excellent but unprofitable semiconductor manufacturing operation does not, nor does its choice of Globalfoundries, with whom it has had a longstanding relationship.
 
Read more

From Intel Developer Forum – New Xeon E5 v3 Promises A Respite For Capacity Planners

Richard Fichera

I'm at IDF, a major geekfest for the people interested in the guts of today’s computing infrastructure, and will be immersing myself in the flow for a couple of days. Before going completely off the deep end, I wanted to call out the announcement of the new Xeon E5. While I’ve discussed it in more depth in an accompanying Quick Take just published on our main website, I wanted to add some additional comments on its implications for data center operations, particularly in the areas of capacity planning and long-term capital budgeting.

For many years, each successive iteration of Intel’s and partners’ roadmaps has been quietly delivering a major benefit that seldom gets top billing – additional capacity within the same power and physical footprint, and the resulting ability for users from small enterprises to mega-scale service providers, to defer additional data spending capital expense.

Read more

VMworld – Reflections on a Transformational Event

Richard Fichera

A group of us just published an analysis of VMworld (Breaking Down VMworld), and I thought I’d take this opportunity to add some additional color to the analysis. The report is an excellent synthesis of our analysis, the work of a talented team of collaborators with my two cents thrown in as well, but I wanted to emphasize a few additional impressions, primarily around storage, converged infrastructure, and the  overall tone of the show.

First, storage. If they ever need a new name for the show, they might consider “StorageWorld” – it seemed to me that just about every other booth on the show floor was about storage. Cloud storage, flash storage, hybrid storage, cheap storage, smart storage, object storage … you get the picture.[i] Reading about the hyper-growth of storage and the criticality of storage management to the overall operation of a virtualized environment does not drive the concept home in quite the same way as seeing 1000s of show attendees thronging the booths of the storage vendors, large and small, for days on end. Another leading indicator, IMHO, was the “edge of the show” booths, the cheaper booths on the edge of the floor, where smaller startups congregate, which was also well populated with new and small storage vendors – there is certainly no shortage of ambition and vision in the storage technology pipeline for the next few years.

Read more

IBM Announces Next Generation POWER Systems – Big Win for AIX Users, New Option for Linux

Richard Fichera

On April 23, IBM rolled out the long-awaited POWER8 CPU, the successor to POWER7+, and given the extensive pre-announcement speculation, the hardware itself was no big surprise (the details are fascinating, but not suitable for this venue), offering an estimated  30 - 50% improvement in application performance over the latest POWER7+, with potential for order of magnitude improvements with selected big data and analytics workloads. While the technology is interesting, we are pretty numb to the “bigger, better, faster” messaging that inevitably accompanies new hardware announcements, and the real impact of this announcement lies in its utility for current AIX users and IBM’s increased focus on Linux and its support of the OpenPOWER initiative.

Technology

OK, so we’re numb, but it’s still interesting. POWER8 is an entirely new processor generation implemented in 22 nm CMOS (the same geometry as Intel’s high-end CPUs). The processor features up to 12 cores, each with up to 8 threads, and a focus on not only throughput but high performance per thread and per core for low-thread-count applications. Added to the mix is up to 1 TB of memory per socket, massive PCIe 3 I/O connectivity and Coherent Accelerator Processor Interface (CAPI), IBM’s technology to deliver memory-controller-based access for accelerators and flash memory in POWER systems. CAPI figures prominently in IBM’s positioning of POWER as the ultimate analytics engine, with the announcement profiling the performance of a configuration using 40 TB of CAPI-attached flash for huge in-memory analytics at a fraction of the cost of a non-CAPI configuration.[i]

A Slam-dunk for AIX users and a new play for Linux

Read more

Intel Bumps up High-End Servers with New Xeon E7 V2 - A Long Awaited and Timely Leap

Richard Fichera

The long draught at the high-end

It’s been a long wait, about four years if memory serves me well, since Intel introduced the Xeon E7, a high-end server CPU targeted at the highest performance per-socket x86, from high-end two socket servers to 8-socket servers with tons of memory and lots of I/O. In the ensuing four years (an eternity in a world where annual product cycles are considered the norm), subsequent generations of lesser Xeons, most recently culminating in the latest generation 22 nm Xeon E5 V2 Ivy Bridge server CPUs, have somewhat diluted the value proposition of the original E7.

So what is the poor high-end server user with really demanding single-image workloads to do? The answer was to wait for the Xeon E7 V2, and at first glance, it appears that the wait was worth it. High-end CPUs take longer to develop than lower-end products, and in my opinion Intel made the right decision to skip the previous generation 22nm Sandy Bridge architecture and go to Ivy Bridge, it’s architectural successor in the Intel “Tick-Tock” cycle of new process, then new architecture.

What was announced?

The announcement was the formal unveiling of the Xeon E7 V2 CPU, available in multiple performance bins with anywhere from 8 to 15 cores per socket. Critical specifications include:

  • Up to 15 cores per socket
  • 24 DIMM slots, allowing up to 1.5 TB of memory with 64 GB DIMMs
  • Approximately 4X I/O bandwidth improvement
  • New RAS features, including low-level memory controller modes optimized for either high-availability or performance mode (BIOS option), enhanced error recovery and soft-error reporting
Read more