Big Data Survey

Boris Evelson

Forrester is in the middle of a major research effort on various Big Data-related topics. As part of this research, we’ll be kicking off a client survey shortly. I’d like to solicit everyone’s input on the survey questions and answer options. Here’s the first draft. What am I missing?

  1. Scope. What is the scope of your Big Data initiative?
    1. Enterprise
    2. LOB
    3. Departmental
    4. Regional
    5. Project-based
  2. Status. What is the status of your Big Data initiative?
    1. In production
    2. Piloting
    3. Testing
    4. Evaluating
  3. Industry. Are the questions you are trying to address with your Big Data initiative general or industry-specific?
    1. General
    2. Industry-specific
    3. Both
  4. Domains. What enterprise areas does your Big Data initiative address?
    1. Sales
    2. Marketing
    3. Customer service
    4. Finance
    5. HR
    6. Product development
    7. Operations
    8. Logistics
    9. Brand management
    10. IT analytics
    11. Risk management
  5. Why BigData? What are the main business requirements or inadequacies of earlier-generation BI/DW/ET technologies, applications, and architecture that are causing you to consider or implement Big Data?
    1. Data volume
      1. <10Tb
      2. 10-100Tb
      3. 100Tb-1Pb
      4. >1Pb
    2. Velocity of change and scope/requirements unpredictability
    3. Data diversity
    4. Analysis-driven requirements (Big Data) vs. requirements-driven analysis (traditional BI/DW)
    5. Cost. Big Data solutions are less expensive than traditional ETL/DW/BI solutions
Read more

Is SAP BusinessObjects 4.0 Worth The Wait?

Boris Evelson

SAP BusinessObjects (BO) 4.0 suite is here. It’s been in the ramp-up phase since last fall; according to our sources, SAP plans to announce its general availability sometime in May, possibly at Sapphire. It’s about a year late (SAP first told Forrester that it planned to roll it out in the spring of 2010, so I wanted to include it in the latest edition of the Forrester Wave™ for enterprise BI platforms but couldn’t), and the big question is: Was it worth the wait? In my humble opinion, yes, it was! Here are seven major reasons to upgrade or to consider SAP BI if you haven’t done so before:

  1. BO Universe (semantic layer) can now be sourced from multiple databases, overcoming a major obstacle of previous versions.
  2. Universe can now access MOLAP (cubes from Microsoft Analysis Services, Essbase, Mondrian, etc.) data sources directly via MDX without having to “flatten them out” first. In prior versions, Universe could only access SQL sources.
  3. There’s now a more common look and feel to individual BI products, including Crystal, WebI, Explorer, and Analysis (former BEx). This is another step in the right direction to unify SAP BI products, but it’s still not a complete solution. It will be a while before all SAP BI products are fully and seamlessly integrated, as well as other BI tools/platforms that grew more organically.
  4. All SAP BI tools, including Xcelsius (Dashboards in 4.0), that did not have access to BO Universe now do.
  5. There’s now a tighter integration with BW via direct exposure of BW metadata (BEx queries and InfoProviders) to all BO tools.
Read more

Trends 2011 And Beyond: Business Intelligence

Boris Evelson

Forrester continues to see ever-increasing levels of interest in and adoption of business intelligence (BI) platforms, applications, and processes. But while BI maturity in enterprises continues to grow, and BI tools have become more function-rich and robust, the promise of efficient and effective BI solutions remains challenging at best and elusive at worst. Why? Two main reasons: First, BI is all about best practices and lessons learned, which only come with years of experience; and second, earlier-generation BI approaches cannot easily keep up with ever-changing business and regulatory requirements. In the attached research document, Forrester reviews the top best practices for BI and predicts what the next-generation BI technologies will be. We summarize all of this in a single über-trend and best practice: agility. IT and business pros should adopt Agile BI processes, technologies, and architectures to improve their chances of delivering successful BI initiatives.

Business intelligence (BI) software has emerged as a hot topic in the past few years; in 2011, most companies will again focus their software investment plans on BI. More than 49% of the companies that responded to our most recent Forrsights Software Survey have concrete plans to implement or expand their use of BI software within the next 24 months. But being interested in BI software and spending money to adopt BI tools and processes do not necessarily translate into successful implementations: Forrester’s most recent BI maturity survey indicated that enterprise BI maturity levels are still below average (2.75 on a scale of 5, a modest 6% increase over 2009). Why are BI maturity levels so low, given the amount of money firms spend on it? Three factors contribute to this rift and can lead to less-than-successful BI initiatives:

  1. Implementing BI requires using best practices and building upon lessons learned.
Read more

“Just Right” Customer Analytics - update

Boris Evelson

Why, oh, why is it that every time I hear about a BI project from an IT person, or from a business stakeholder describing how IT delivered it, with few exceptions, these are the stories plagued with multiple challenges? And why is it that when I hear a BI story about an application that was installed, built, and used by a business user, with little or no support from IT, it’s almost always a success story?

I think we all know the answer to that question. It’s all about IT/business misalignment. A business user wants flexibility, while an IT person is charged with keeping order and controlling data, applications, scope, and projects. A business user wants to react to ever-changing requirements, but an IT person needs to have a formal planning process. A businessperson wants to have a tool best-suited for the business requirements, and an IT person wants to leverage enterprise standard platforms.

Who’s right and who’s wrong? Both. The only real answer is somewhere in the middle. There’s also a new emerging alternative, especially when applied to specific domains, like customer analytics. As I have repeatedly written in multiple research documents, front-office processes are especially poorly-suited for traditional analytics. Front office processes like sales and marketing need to be infinitely more agile and reactive, as their back office cousins from finance and HR for obvious reasons.

Read more

To BI Or Not To BI — That Is The Question For SAS

Boris Evelson

First of all, congratulations, SAS AR team, for one of the most efficiently and effectively run events.

SAS needs to make up its mind whether it wants to be in the BI game or not. Despite what SAS’s senior executives have been heard saying occasionally, that “BI is dead,” SAS is not quite done with BI. After all, BI makes up 11% of SAS’s very impressive $2.4 billion annual revenue (with uninterrupted 35-year growth!). Additionally BI contributed 22% to SAS 2010 growth,  just below analytics at 26%.

Even though some organizations are looking at and implementing advanced analytics such as statistical analysis, predictive modeling, and — most important — model-based decisions, there are only a handful of them. As our BI maturity survey shows year after year, BI — even basic BI — maturity is still below average in most enterprises. Add these numbers to the abysmal enterprise BI applications penetration levels in most large organizations, and you get continued, huge, and ever-expanding opportunity that no vendor in its right mind, especially a vendor with leading BI tools, should miss.

Read more

Mobile Tablet PCs, Not Phones, Will Create Critical Mass For Enterprise BI Adoption

Boris Evelson

Mobile devices and mobile Internet are everywhere. Over the past few years, Forrester has tracked continuously increasing levels of adoption and maturity for mobile business applications, but not so for mobile business intelligence (BI) applications. The adoption and maturity of mobile BI fall behind other mobile enterprise applications for multiple reasons, mainly the lack of specific business use cases and tangible ROI, as well as inadequate smartphone screen and keyboard form factors. However, larger form factor devices such as tablets and innovative approaches to online/offline BI technical architecture will boost mobile BI adoption and maturity in the near future. BP professionals must start evaluating and prototyping mobile BI platforms and applications to make sure that all key business processes and relevant information are available to knowledge workers wherever they are.

But mobile BI adoption levels are still low. Why? We see three major reasons.

  • Smartphones still lack the form factor appropriate for BI
  • The business case for mobile BI remains tough to build
  • Mobile device security is still a concern

Now, mobile tablet devices are a different story. Just like Baby Bear's porridge in the "Goldilocks And The Three Bears" fairy tale, tablet PCs are "just right" for mobile BI end users. So what can you do with mobile BI? Plenty!

  • Improve customer and partner engagement
  • Deliver BI in the right place, at the right time
  • Introduce BI for the workers without access to traditional BI applications
  • Improve BI efficiency via query relevance
  • Improve "elevator pitch" effectiveness
  • Give away mobile devices as an incentive to cross-sell and upsell analytic applications
  • Position the cool factor of mobile devices
Read more

How Enterprise Feedback Management Can Help Market Insights Professionals Manage Data And Information Overload

Roxana Strohmenger

Companies are in a unique position today, as they have an unprecedented ability to collect information about consumers through various channels and thus create rich and deep profiles of their target customers. However, what is considered a goldmine of information has actually highlighted many pain points, including: 

  • Consumers are being bombarded with multiple surveys across different channels by different departments. As a result, consumers feel more and more that they are being badgered for information about themselves.
  • A siloed department structure creates little incentive to collaborate across departments. Thus, repetition of similar projects by different departments occurs, contradictory results can be communicated internally, and learning based on a department’s successes and failures from past projects is not communicated across departments.
Read more

Does The Good Old 80/20 Rule Work For Estimating BI Costs?

Boris Evelson

I get tons of questions about "how much it costs to develop an analytical application." Alas, as most of us unfortunately know, the only real answer to that question is “it depends.” It depends on the scope, requirements, technology used, corporate culture and at least a few dozen of more dimensions. However, at the risk of a huge oversimplification, in many cases we can often apply the good old 80/20 rule as follows:

Components

  • ~20% for software, hardware, and other data center and communications infrastructure
  • ~80% for full time employees, outside services (analysis, design, coding, testing, integration, implementation, etc), new processes, new initiatives (governance, change management, training)

Initial softare costs (~80%) vs. Ongoing software license maintenance costs (~20% / year)

Direct (~20%) vs. Indirect costs (~80%). Here are some examples:

Direct ~20%

  • Data integration for reporting and analysis
  • Data cleansing processes for reporting and analysis
  • Reporting and analytical data bases such as Data Warehouses, Data Marts
  • Reporting / querying / dashboards
  • OLAP (Online Analytical Processing)
  • Analytical MDM (Master Data Management)
  • Analytical metadata management
  • Data mining, predictive analytics
  • BI specific  SOA (Services Oriented Architecture) or other types of EAI (Enterprise Application Integration)
Read more

When ROLAP Is Not A ROLAP

Boris Evelson

I get many inquiries on the differences and pros and cons of MOLAP versus ROLAP architectures for analytics and BI. In the old days, the differences between MOLAP, DOLAP, HOLAP, and ROLAP were pretty clear. Today, given the modern scalability requirements, DOLAP has all but disappeared, and the lines between MOLAP, ROLAP, and HOLAP are getting murkier and murkier. Here are some of the reasons:

  • Some RDBMSes (Oracle, DB2, Microsoft) offer built-in OLAP engines, often eliminating a need to have a separate OLAP engine in BI tools.
  • Some of the DW-optimized DBMSes like Teradata, SybaseIQ, and Netezza partially eliminate the need for an OLAP engine with aggregate indexes, columnar architecture, or brute force table scans.
  • MOLAP engines like Microsoft SSAS and Oracle Essbase can do drill-throughs to detailed transactions.
  • Semantic layers like SAP BusinessObjects Universe have some OLAP-like functionality.
Read more

To BW Or Not To BW - 2011 Update

Boris Evelson

I get lots of questions from clients on whether they should consider (or continue to rely on) SAP BW for their data warehousing (DW) and business intelligence (BI) platform, tools, and applications. It’s a multidimensional (forgive the pun) decision. Jim Kobielus and I authored our original point of view on the subject soon after the SAP/BusinessObjects merger, so this is an updated view. In addition to what I’ll describe here, please also refer to all of the DW research by my colleague, Jim Kobielus.

First of all, split the evaluation and the decision into two parts: front end (BI) and back end (DW).

  • Back end – DW
    • Strengths:
      • Best for SAP-centric environments.
      • Agile tool that lets you control multiple layers (typically handled by different tools) such as ETL, DDL, metadata, SQL/MDX from a single administrative interface.
      • Unique BW accelerator appliance (via in-memory indexes).
Read more