AMD Acquires SeaMicro — Big Bet On Architectural Shift For Servers

Richard Fichera

[For some reason this has been unpublished since April — so here it is well after AMD announced its next spin of the SeaMicro product.]

At its recent financial analyst day, AMD indicated that it intended to differentiate itself by creating products that were advantaged in niche markets, with specific mention, among other segments, of servers, and to generally shake up the trench warfare that has had it on the losing side of its lifelong battle with Intel (my interpretation, not AMD management’s words). Today, at least for the server side of the business, it made a move that can potentially offer it visibility and differentiation by acquiring innovative server startup SeaMicro.

SeaMicro has attracted our attention since its appearance (blog post 1, blog post 2) with its innovative architecture that dramatically reduces power and improves density by sharing components like I/O adapters, disks, and even BIOS over a proprietary fabric. The irony here is that SeaMicro came to market with a tight alignment with Intel, who at one point even introduced a special dual-core packaging of its Atom CPU to allow SeaMicro to improve its density and power efficiency. Most recently SeaMicro and Intel announced a new model that featured Xeon CPUs to address the more mainstream segments that were not a part of SeaMicro’s original Atom-based offering.

Read more

Data Center Power And Efficiency – Public Enemy #1 Or The Latest Media Punching Bag?

Richard Fichera

This week, the New York Times ran a series of articles about data center power use (and abuse) “Power, Pollution and the Internet” (http://nyti.ms/Ojd9BV) and “Data Barns in a Farm Town, Gobbling Power and Flexing Muscle” (http://nyti.ms/RQDb0a). Among the claims made in the articles were that data centers were “only using 6 to 12 % of the energy powering their servers to deliver useful computation. Like a lot of media broadsides, the reality is more complex than the dramatic claims made in these articles. Technically they are correct in claiming that of the electricity going to a server, only a very small fraction is used to perform useful work, but this dramatic claim is not a fair representation of the overall efficiency picture. The Times analysis fails to take into consideration that not all of the power in the data center goes to servers, so the claim of 6% efficiency of the servers is not representative of the real operational efficiency of the complete data center.

On the other hand, while I think the Times chooses drama over even-keeled reporting, the actual picture for even a well-run data center is not as good as its proponents would claim. Consider:

  • A new data center with a PUE of 1.2 (very efficient), with 83% of the power going to IT workloads.
  • Then assume that 60% of the remaining power goes to servers (storage and network get the rest), for a net of almost 50% of the power going into servers. If the servers are running at an average utilization of 10%, then only 10% of 50%, or 5% of the power is actually going to real IT processing. Of course, the real "IT number" is the server + plus storage + network, so depending on how you account for them, the IT usage could be as high as 38% (.83*.4 + .05).
Read more

HP Vs. Oracle – Despite Verdict In Favor Of HP, The End Is Not Yet In Sight

Richard Fichera

This week the California courts handed down a nice present for HP — a verdict confirming that Oracle was required to continue to deliver its software on HP’s Itanium-based Integrity servers. This was a major victory for HP, on the face of it giving them the prize they sought — continued availability of Oracle’s eponymous database on their high-end systems.

However, HP’s customers should not immediately assume that everything has returned to a “status quo ante.” Once Humpty Dumpty has fallen off the wall it is very difficult to put the pieces together again. As I see it, there are still three major elephants in the room that HP users must acknowledge before they make any decisions:

  • Oracle will appeal, and there is no guarantee of the outcome. The verdict could be upheld or it could be reversed. If it is upheld, then that represents a further delay in the start date from which Oracle will be measured for its compliance with the court ordered development. Oracle will also continue to press its counterclaims against HP, but those do not directly relate to the continued development or Oracle software on Itanium.
  • Itanium is still nearing the end of its road map. A reasonable interpretation of the road map tea leaves that have been exposed puts the final Itanium release at about 2015 unless Intel decides to artificially split Kittson into two separate releases. Integrity customers must take this into account as they buy into the architecture in the last few years of Itanium’s life, although HP can be depended on to offer high-quality support for a decade after the last Itanium CPU rolls off Intel’s fab lines. HP has declared its intention to produce Integrity-level x86 systems, but OS support intentions are currently stated as Linux and Windows, not HP-UX.
Read more

DCIM — Updates And Trends

Richard Fichera

Only a few months since I authored Forrester’s "Market Overview: Data Center Infrastructure Management Solutions," significant changes merit some additional commentary.

Vendor Drama

The major vendor drama of the “season” is the continued evolution of Schneider and Emerson’s DCIM product rollout. Since Schneider’s worldwide analyst conference in Paris last week, we now have pretty good visibility into both major vendors' strategy and products. In a nutshell, we have two very large players, both with large installed bases of data center customers, and both selling a vision of an integrated modular DCIM framework. More importantly it appears that both vendors can deliver on this promise. That is the good news. The bad news is that their offerings are highly overlapped, and for most potential customers the choice will be a difficult one. My working theory is that whoever has the largest footprint of equipment will have an advantage, and that a lot depends on the relative execution of their field marketing and sales organizations as both companies rush to turn 1000s of salespeople and partners loose on the world with these products. This will be a classic market share play, with the smart strategy being to sacrifice margin for market share, since DCIM solutions have a high probability of pulling through services, and usually involve some annuity revenue stream from support and update fees.

How Big Is The Market?

Read more

HP Rolls Out BladeSystem Upgrades – Significant Improvements Aim To Fend Off IBM And Cisco

Richard Fichera

Overview

Earlier this week at its Discover customer event, HP announced a significant set of improvements to its already successful c-Class BladeSystem product line, which, despite continuing competitive pressure from IBM and the entry of Cisco into the market three years ago, still commands approximately 50% of the blade market. The significant components of this announcement fall into four major functional buckets – improved hardware, simplified and expanded storage features, new interconnects and I/O options, and serviceability enhancements. Among the highlights are:

  • Direct connection of HP 3PAR storage – One of the major drawbacks for block-mode storage with blades has always been the cost of the SAN to connect it to the blade enclosure. With the ability to connect an HP 3PAR storage array directly to the c-Class enclosure without any SAN components, HP has reduced both the cost and the complexity of storage for a wide class of applications that have storage requirements within the scope of a single storage array.
  • New blades – With this announcement, HP fills in the gaps in their blade portfolio, announcing a new Intel Xeon EN based BL-420 for entry requirements, an upgrade to the BL-465 to support the latest AMD 16-core Interlagos CPU, and the BL-660, a new single-width Xeon E5 based 4-socket blade. In addition, HP has expanded the capacity of the sidecar storage blade to 1.5 TB, enabling an 8-server and 12 TB + chassis configuration.
Read more

Dell Joins The ARMs Race, Announces ARM-Based 'Copper' Server

Richard Fichera

Earlier this week Dell joined arch-competitor HP in endorsing ARM as a potential platform for scale-out workloads by announcing “Copper,” an ARM-based version of its PowerEdge-C dense server product line. Dell’s announcement and positioning, while a little less high-profile than HP’s February announcement, is intended to serve the same purpose — to enable an ARM ecosystem by providing a platform for exploring ARM workloads and to gain a visible presence in the event that it begins to take off.

Dell’s platform is based on a four-core Marvell ARM V7 SOC implementation, which it claims is somewhat higher performance than the Calxeda part, although drawing more power, at 15W per node (including RAM and local disk). The server uses the PowerEdge-C form factor of 12 vertically mounted server modules in a 3U enclosure, each with four server nodes on them for a total of 48 servers/192 cores in a 3U enclosure. In a departure from other PowerEdge-C products, the Copper server has integrated L2 network connectivity spanning all servers, so that the unit will be able to serve as a low-cost test bed for clustered applications without external switches.

Dell is offering this server to selected customers, not as a GA product, along with open source versions of the LAMP stack, Crowbar, and Hadoop. Currently Cannonical is supplying Ubuntu for ARM servers, and Dell is actively working with other partners. Dell expects to see OpenStack available for demos in May, and there is an active Fedora project underway as well.

Read more

ARM Arrives – Calxeda Shows Real Hardware Running Linux

Richard Fichera

I said last year that this would happen sometime in the first half of this year, but for some reason my colleagues and clients have kept asking me exactly when we would see a real ARM server running a real OS. How about now?

 To copy from Calxeda’s most recent blog post:

“This week, Calxeda is showing a live Calxeda cluster running Ubuntu 12.04 LTS on real EnergyCore hardware at the Ubuntu Developer and Cloud Summit events in Oakland, CA. … This is the real deal; quad-core, w/ 4MB cache, secure management engine, and Calxeda’s fabric all up and running.”

This is a significant milestone for many reasons. It proves that Calxeda can indeed deliver a working server based on its scalable fabric architecture, although having HP signing up as a partner meant that this was essentially a non-issue, but still, proof is good. It also establishes that at least one Linux distribution provider, in this case Ubuntu, is willing to provide a real supported distribution. My guess is that Red Hat and Centos will jump on the bus fairly soon as well.

Most importantly, we can get on with the important work of characterizing real benchmarks on real systems with real OS support. HP’s discovery centers will certainly play a part in this process as well, and I am willing to bet that by the end of the summer we will have some compelling data on whether the ARM server will deliver on its performance and energy efficiency promises. It’s not a slam dunk guaranteed win – Intel has been steadily ratcheting up its energy efficiency, and the latest generation of x86 server from HP, IBM, Dell, and others show promise of much better throughput per watt than their predecessors. Add to that the demonstration of a Xeon-based system by Sea Micro (ironically now owned by AMD) that delivered Xeon CPUs at a 10 W per CPU power overhead, an unheard of efficiency.

Read more

IBM Rounds Out Its Linux Offerings With Power Linux

Richard Fichera

In the latest evolution of its Linux push, IBM has added to its non-x86 Linux server line with the introduction of new dedicated Power 7 rack and blade servers that only run Linux. “Hah!” you say. “Power already runs Linux, and quite well according to IBM.” This is indeed true, but when you look at the price/performance of Linux on standard Power, the picture is not quite as advantageous, with the higher cost of Power servers compared to x86 servers offsetting much if not all of the performance advantage.

Enter the new Flex System p24L (Linux) Compute Node blade for the new PureFlex system and the IBM PowerLinuxTM 7R2 rack server. Both are dedicated Linux-only systems with 2 Power 7 6/8 core, 4 threads/core processors, and are shipped with unlimited licenses for IBM’s PowerVM hypervisor. Most importantly, these systems, in exchange for the limitation that they will run only Linux, are priced competitively with similarly configured x86 systems from major competitors, and IBM is betting on the improvement in performance, shown by IBM-supplied benchmarks, to overcome any resistance to running Linux on a non-x86 system. Note that this is a different proposition than Linux running on an IFL in a zSeries, since the mainframe is usually not the entry for the customer — IBM typically sells to customers with existing mainframe, whereas with Power Linux they will also be attempting to sell to net new customers as well as established accounts.

Read more

Why Tablets Will Become Our Primary Computing Device

Frank Gillett

Tablets aren’t the most powerful computing gadgets. But they are the most convenient.

They’re bigger than the tiny screen of a smartphone, even the big ones sporting nearly 5-inch screens.

They have longer battery life and always-on capabilities better than any PC — and will continue to be better at that than any ultrathin/book/Air laptop. That makes them very handy for carrying around and using frequently, casually, and intermittently even where there isn’t a flat surface or a chair on which to use a laptop. 

And tablets are very good for information consumption, an activity that many of us do a lot of. Content creation apps are appearing on tablets. They’ll get a lot better as developers get used to building for touch-first interfaces, taking advantage of voice input, and adding motion gestures.

They’re even better for sharing and working in groups. There’s no barrier of a vertical screen, no distracting keyboard clatter, and it just feels natural to pass over a tablet, like a piece of paper, compared to spinning around a laptop.

Read more

IBM Raises The Bar On Converged Infrastructure With PureFlex And PureApplication Integrated Offerings

Richard Fichera

IBM Jumps On CI With Both Feet

Over the last couple of years, IBM, despite having a rich internal technology ecosystem and a number of competitive blade and CI offerings, has not had a comprehensive integrated offering to challenge HP’s CloudSystem Matrix and Cisco’s UCS. This past week IBM effectively silenced its critics and jumped to the head of the CI queue with the announcement of two products, PureFlex and PureApplication, the results of a massive multi-year engineering investment in blade hardware, systems management, networking, and storage integration. Based on a new modular blade architecture and new management architecture, the two products are really more of a continuum of a product defined by the level of software rather than two separate technology offerings.

PureFlex is the base product, consisting of the new hardware (which despite having the same number of blades as the existing HS blade products, is in fact a totally new piece of hardware), which integrates both BNT-based networking as well as a new object-based management architecture which can manage up to four chassis and provide a powerful setoff optimization, installation, and self-diagnostic functions for the hardware and software stack up to and including the OS images and VMs. In addition IBM appears to have integrated the complete suite of Open Fabric Manager and Virtual Fabric for remapping MAC/WWN UIDs and managing VM networking connections, and storage integration via the embedded V7000 storage unit, which serves as both a storage pool and an aggregation point for virtualizing external storage. The laundry list of features and functions is too long to itemize here, but PureFlex, especially with its hypervisor-neutrality and IBM’s Cloud FastStart option, is a complete platform for an enterprise private cloud or a horizontal VM compute farm, however you choose to label a shared VM utility.

Read more