HPE Transforms Infrastructure Management with Synergy Composable Infrastructure Announcement

Richard Fichera


I’ve written and commented in the past about the inevitability of a new class of infrastructure called “composable”, i.e. integrated server, storage and network infrastructure that allowed its users to “compose”, that is to say configure, a physical server out of a collection of pooled server nodes, storage devices and shared network connections.[i]

The early exemplars of this class were pioneering efforts from Egenera and  blade systems from Cisco, HP, IBM and others, which allowed some level of abstraction (a necessary precursor to composablity) of server UIDs including network addresses and storage bindings, and introduced the notion of templates for server configuration. More recently the Dell FX and the Cisco UCS M-Series servers introduced the notion of composing of servers from pools of resources within the bounds of a single chassis.[ii] While innovative, they were early efforts, and lacked a number of software and hardware features that were required for deployment against a wide spectrum of enterprise workloads.

What’s New?

This morning, HPE put a major marker down in the realm of composable infrastructure with the announcement of Synergy, its new composable infrastructure system. HPE Synergy represents a major step-function in capabilities for core enterprise infrastructure as it delivers cloud-like semantics to core physical infrastructure. Among its key capabilities:

Read more

Oracle Delivers On SPARC Promises With New T4 Processors And Systems

Richard Fichera

Background – Promises And Potential

Last year I wrote about Oracle’s new plans for SPARC, anchored by a new line of SPARC CPUs engineered in conjunction with Fujitsu (Does SPARC have a Future?), and commented that the first deliveries of this new technology would probably be in early 2012, and until we saw this tangible evidence of Oracle’s actual execution of this road map we could not predict with any confidence the future viability of SPARC.

The T4 CPU

Fast forward a year and Oracle has delivered the first of the new CPUs, ahead of schedule and with impressive gains in performance that make it look like SPARC will remain a viable platform for years. Specifically, Oracle has introduced the T4 CPU and systems based on them. The T4, an evolution of Oracle’s highly threaded T-Series architecture, is implemented with an entirely new core that will form the basis, with variations in number of threads versus cores and cache designs, of the future M and T series systems. The M series will have fewer threads and more performance per thread, while the T CPUs will, like their predecessors, emphasize throughput for highly threaded workloads. The new T4 will have 8 cores, and each core will have 8 threads. While the T4 emphasizes highly threaded workload performance, it is important to note that Oracles has radically improved single-thread performance over its predecessors, with Oracle claiming performance per thread improvements of 5X over its predecessors, greatly improving its utility as a CPU to power less thread-intensive workloads as well.

The SPARC SuperCluster

Read more