AMD Acquires SeaMicro — Big Bet On Architectural Shift For Servers

Richard Fichera

[For some reason this has been unpublished since April — so here it is well after AMD announced its next spin of the SeaMicro product.]

At its recent financial analyst day, AMD indicated that it intended to differentiate itself by creating products that were advantaged in niche markets, with specific mention, among other segments, of servers, and to generally shake up the trench warfare that has had it on the losing side of its lifelong battle with Intel (my interpretation, not AMD management’s words). Today, at least for the server side of the business, it made a move that can potentially offer it visibility and differentiation by acquiring innovative server startup SeaMicro.

SeaMicro has attracted our attention since its appearance (blog post 1, blog post 2) with its innovative architecture that dramatically reduces power and improves density by sharing components like I/O adapters, disks, and even BIOS over a proprietary fabric. The irony here is that SeaMicro came to market with a tight alignment with Intel, who at one point even introduced a special dual-core packaging of its Atom CPU to allow SeaMicro to improve its density and power efficiency. Most recently SeaMicro and Intel announced a new model that featured Xeon CPUs to address the more mainstream segments that were not a part of SeaMicro’s original Atom-based offering.

Read more

Data Center Power And Efficiency – Public Enemy #1 Or The Latest Media Punching Bag?

Richard Fichera

This week, the New York Times ran a series of articles about data center power use (and abuse) “Power, Pollution and the Internet” (http://nyti.ms/Ojd9BV) and “Data Barns in a Farm Town, Gobbling Power and Flexing Muscle” (http://nyti.ms/RQDb0a). Among the claims made in the articles were that data centers were “only using 6 to 12 % of the energy powering their servers to deliver useful computation. Like a lot of media broadsides, the reality is more complex than the dramatic claims made in these articles. Technically they are correct in claiming that of the electricity going to a server, only a very small fraction is used to perform useful work, but this dramatic claim is not a fair representation of the overall efficiency picture. The Times analysis fails to take into consideration that not all of the power in the data center goes to servers, so the claim of 6% efficiency of the servers is not representative of the real operational efficiency of the complete data center.

On the other hand, while I think the Times chooses drama over even-keeled reporting, the actual picture for even a well-run data center is not as good as its proponents would claim. Consider:

  • A new data center with a PUE of 1.2 (very efficient), with 83% of the power going to IT workloads.
  • Then assume that 60% of the remaining power goes to servers (storage and network get the rest), for a net of almost 50% of the power going into servers. If the servers are running at an average utilization of 10%, then only 10% of 50%, or 5% of the power is actually going to real IT processing. Of course, the real "IT number" is the server + plus storage + network, so depending on how you account for them, the IT usage could be as high as 38% (.83*.4 + .05).
Read more

Can Dell Be Your Strategic Vendor In Asia Pacific?

Tim Sheedy

I recently had the chance to spend some quality time with Dell in Singapore at their event for Forrester analysts in the Asia Pacific region. As Dell is a company traditionally known for its hardware products, I had low expectations – to date, few of my CIO clients would consider Dell a “strategic” supplier.

However, I was pleasantly surprised – Dell is reinventing itself from a PC and server supplier into an IT solutions provider. The benefits of the acquisition of Perot Systems and various software assets in North America and around the globe are starting to pay dividends in Asia Pacific.

As a late entrant into many of the newer markets they play in, they have the rare advantage of being able to do things differently – both from a solution and a pricing standpoint. From data centre transformation through legacy migration and application modernisation, to networking solutions, Dell is attempting to be disruptive player in the market – simplifying processes that were typically human-centric, and automating capabilities to reduce the overall burden of owning and running infrastructure.

Their strategy is to stay close to what they know – much of their capability is linked directly to infrastructure – but their open, modular, and somewhat vendor agnostic approach is in direct opposition to the “vendor lock-in” solutions that many of the other major vendors push.

Read more

Dell Is On A Quest For Software

Glenn O'Donnell

 

One of the many hilarious scenes in Monty Python and the Holy Grail is the "Bridge of Death" sequence. This week's news that Dell plans to acquire Quest Software makes one think of a slight twist to this scene:

Bridgekeeper:   "What ... is your name?"
Traveler:           "John Swainson of Dell."
Bridgekeeper:   "What ... is your quest?"
Traveler:           "Hey! That's not a bad idea!"

We suspect Dell's process was more methodical than that!

This acquisition was not a surprise, of course. All along, it has been obvious that Dell needed stronger assets in software as it continues on its quest to avoid the Gorge of Eternal Peril that is spanned by the Bridge of Death. When the company announced that John Swainson was joining to lead the newly formed software group, astute industry watchers knew the next steps would include an ambitious acquisition. We predicted such an acquisition would be one of Swainson's first moves, and after only four months on the job, indeed it was.

Read more

DCIM — Updates And Trends

Richard Fichera

Only a few months since I authored Forrester’s "Market Overview: Data Center Infrastructure Management Solutions," significant changes merit some additional commentary.

Vendor Drama

The major vendor drama of the “season” is the continued evolution of Schneider and Emerson’s DCIM product rollout. Since Schneider’s worldwide analyst conference in Paris last week, we now have pretty good visibility into both major vendors' strategy and products. In a nutshell, we have two very large players, both with large installed bases of data center customers, and both selling a vision of an integrated modular DCIM framework. More importantly it appears that both vendors can deliver on this promise. That is the good news. The bad news is that their offerings are highly overlapped, and for most potential customers the choice will be a difficult one. My working theory is that whoever has the largest footprint of equipment will have an advantage, and that a lot depends on the relative execution of their field marketing and sales organizations as both companies rush to turn 1000s of salespeople and partners loose on the world with these products. This will be a classic market share play, with the smart strategy being to sacrifice margin for market share, since DCIM solutions have a high probability of pulling through services, and usually involve some annuity revenue stream from support and update fees.

How Big Is The Market?

Read more

HP Rolls Out BladeSystem Upgrades – Significant Improvements Aim To Fend Off IBM And Cisco

Richard Fichera

Overview

Earlier this week at its Discover customer event, HP announced a significant set of improvements to its already successful c-Class BladeSystem product line, which, despite continuing competitive pressure from IBM and the entry of Cisco into the market three years ago, still commands approximately 50% of the blade market. The significant components of this announcement fall into four major functional buckets – improved hardware, simplified and expanded storage features, new interconnects and I/O options, and serviceability enhancements. Among the highlights are:

  • Direct connection of HP 3PAR storage – One of the major drawbacks for block-mode storage with blades has always been the cost of the SAN to connect it to the blade enclosure. With the ability to connect an HP 3PAR storage array directly to the c-Class enclosure without any SAN components, HP has reduced both the cost and the complexity of storage for a wide class of applications that have storage requirements within the scope of a single storage array.
  • New blades – With this announcement, HP fills in the gaps in their blade portfolio, announcing a new Intel Xeon EN based BL-420 for entry requirements, an upgrade to the BL-465 to support the latest AMD 16-core Interlagos CPU, and the BL-660, a new single-width Xeon E5 based 4-socket blade. In addition, HP has expanded the capacity of the sidecar storage blade to 1.5 TB, enabling an 8-server and 12 TB + chassis configuration.
Read more

Dell Joins The ARMs Race, Announces ARM-Based 'Copper' Server

Richard Fichera

Earlier this week Dell joined arch-competitor HP in endorsing ARM as a potential platform for scale-out workloads by announcing “Copper,” an ARM-based version of its PowerEdge-C dense server product line. Dell’s announcement and positioning, while a little less high-profile than HP’s February announcement, is intended to serve the same purpose — to enable an ARM ecosystem by providing a platform for exploring ARM workloads and to gain a visible presence in the event that it begins to take off.

Dell’s platform is based on a four-core Marvell ARM V7 SOC implementation, which it claims is somewhat higher performance than the Calxeda part, although drawing more power, at 15W per node (including RAM and local disk). The server uses the PowerEdge-C form factor of 12 vertically mounted server modules in a 3U enclosure, each with four server nodes on them for a total of 48 servers/192 cores in a 3U enclosure. In a departure from other PowerEdge-C products, the Copper server has integrated L2 network connectivity spanning all servers, so that the unit will be able to serve as a low-cost test bed for clustered applications without external switches.

Dell is offering this server to selected customers, not as a GA product, along with open source versions of the LAMP stack, Crowbar, and Hadoop. Currently Cannonical is supplying Ubuntu for ARM servers, and Dell is actively working with other partners. Dell expects to see OpenStack available for demos in May, and there is an active Fedora project underway as well.

Read more

IBM Rounds Out Its Linux Offerings With Power Linux

Richard Fichera

In the latest evolution of its Linux push, IBM has added to its non-x86 Linux server line with the introduction of new dedicated Power 7 rack and blade servers that only run Linux. “Hah!” you say. “Power already runs Linux, and quite well according to IBM.” This is indeed true, but when you look at the price/performance of Linux on standard Power, the picture is not quite as advantageous, with the higher cost of Power servers compared to x86 servers offsetting much if not all of the performance advantage.

Enter the new Flex System p24L (Linux) Compute Node blade for the new PureFlex system and the IBM PowerLinuxTM 7R2 rack server. Both are dedicated Linux-only systems with 2 Power 7 6/8 core, 4 threads/core processors, and are shipped with unlimited licenses for IBM’s PowerVM hypervisor. Most importantly, these systems, in exchange for the limitation that they will run only Linux, are priced competitively with similarly configured x86 systems from major competitors, and IBM is betting on the improvement in performance, shown by IBM-supplied benchmarks, to overcome any resistance to running Linux on a non-x86 system. Note that this is a different proposition than Linux running on an IFL in a zSeries, since the mainframe is usually not the entry for the customer — IBM typically sells to customers with existing mainframe, whereas with Power Linux they will also be attempting to sell to net new customers as well as established accounts.

Read more

Dell Bolsters Its Apps Mod Street Cred By Acquiring MAKE Technologies And Clerity

Phil Murphy

Dell made two bold moves last week that bolster its apps modernization street cred. Since MAKE Technologies and Clerity Solutions may not be household names to you, here are our observations about the moves and some rumination on what it means to you.

Who Dell Bought

  • MAKE Technologies (MAKE) - Vancouver, BC-based MAKE brings powerful application analysis, apps portfolio management, and advanced re-engineering capabilities to Dell.
  • Clerity Solutions (Clerity) - not to be confused with CA-Clerity - the PPM tool, it was one of the last remaining COBOL compiler vendors in the business of rehosting COBOL applications to Unix and Microsoft operating systems. It and Micro Focus arguably owned the lion's share of the market.
Read more

Cisco’s Turn At Bat, Introduces Next Generation Of UCS

Richard Fichera

Next up in the 2012 lineup for the Intel E5 refresh cycle of its infrastructure offerings is Cisco, with its announcement last week of what it refers to as its third generation of fabric computing. Cisco announced a combination of tangible improvements to both the servers and the accompanying fabric components, as well as some commitments for additional hardware and a major enhancement of its UCS Manager software immediately and later in 2012. Highlights include:

  • New servers – No surprise here, Cisco is upgrading its servers to the new Intel CPU offerings, leading with its high-volume B200 blade server and two C-Series rack-mount servers, one a general-purpose platform and the other targeted at storage-intensive requirements. On paper, the basic components of these servers sound similar to competitors – new E5 COUs, faster I/O, and more memory. In addition to the servers announced for March availability, Cisco stated that it would be delivering additional models for ultra-dense computing and mission-critical enterprise workloads later in the year.
  • Fabric improvements – Because Cisco has a relatively unique architecture, it also focused on upgrades to the UCS fabric in three areas: server, enclosure, and top-level interconnect. The servers now have an optional improved virtual NIC card with support for up to 128 VLANs per adapter and two 20 GB ports per adapter. One in on the motherboard and another can be plugged in as a mezzanine card, giving up to 80 GB bandwidth to each server. The Fabric Interconnect, the component that connects each enclosure to the top-level Fabric Interconnect, has seen its bandwidth doubled to a maximum of 160 GB. The Fabric Interconnect, the top of the UCS management hierarchy and interface to the rest of the enterprise network, has been up graded to a maximum of 96 universal 10Gb ports (divided between downlinks to the blade enclosures and uplinks to the enterprise fabric.
Read more