Chinese Tech Management Pros: Start Looking Closely At Domestic IT Vendors

Frank Liu

Several events over the past few months in China will affect both the IT procurement strategy of Chinese organizations and the market position and development of local and foreign IT vendors, including:

  • A government-led push away from foreign IT vendors. Amid security concerns, the Chinese government has issued policies to discourage the use of technology from foreign IT vendors. As a result, many IT and business decision-makers at state-owned enterprises (SOEs) and government agencies have put their IT infrastructure plans — most of which involved products and solutions from foreign IT vendors — on hold. They’ve also begun to consider replacing some of their existing technology, such as servers and storage, with equivalents from domestic vendors. This is significant given that government agencies and SOEs are the key IT spenders in China.
  • A trend to get rid of IBM, Oracle, and EMC. Alibaba was an early mover, replacing its IBM Unix servers, Oracle databases, and EMC storage with x86 servers, open source databases like MySQL and MongoDB, and PCIe flash storage. This has evolved into replacing these foreign products and solutions with ones from local Chinese vendors. For example, Inspur launched the I2I project to stimulate customers to drop IBM Unix servers in favor of Inspur Linux servers to support business development. The Postal Savings Bank of China, China Construction Bank, and many city commercial banks have started deploying Inspur servers in their data centers. However, this only affects the x86 server and storage product market: While domestic vendors can provide x86 servers and storage, they still have no databases to replace Oracle’s.
Read more

Intel Bumps up High-End Servers with New Xeon E7 V2 - A Long Awaited and Timely Leap

Richard Fichera

The long draught at the high-end

It’s been a long wait, about four years if memory serves me well, since Intel introduced the Xeon E7, a high-end server CPU targeted at the highest performance per-socket x86, from high-end two socket servers to 8-socket servers with tons of memory and lots of I/O. In the ensuing four years (an eternity in a world where annual product cycles are considered the norm), subsequent generations of lesser Xeons, most recently culminating in the latest generation 22 nm Xeon E5 V2 Ivy Bridge server CPUs, have somewhat diluted the value proposition of the original E7.

So what is the poor high-end server user with really demanding single-image workloads to do? The answer was to wait for the Xeon E7 V2, and at first glance, it appears that the wait was worth it. High-end CPUs take longer to develop than lower-end products, and in my opinion Intel made the right decision to skip the previous generation 22nm Sandy Bridge architecture and go to Ivy Bridge, it’s architectural successor in the Intel “Tick-Tock” cycle of new process, then new architecture.

What was announced?

The announcement was the formal unveiling of the Xeon E7 V2 CPU, available in multiple performance bins with anywhere from 8 to 15 cores per socket. Critical specifications include:

  • Up to 15 cores per socket
  • 24 DIMM slots, allowing up to 1.5 TB of memory with 64 GB DIMMs
  • Approximately 4X I/O bandwidth improvement
  • New RAS features, including low-level memory controller modes optimized for either high-availability or performance mode (BIOS option), enhanced error recovery and soft-error reporting
Read more

Oracle Delivers On SPARC Promises

Richard Fichera

Background

When I returned to Forrester in mid-2010, one of the first blog posts I wrote was about Oracle’s new roadmap for SPARC and Solaris, catalyzed by numerous client inquiries and other interactions in which Oracle’s real level of commitment to future SPARC hardware was the topic of discussion. In most cases I could describe the customer mood as skeptical at best, and panicked and committed to migration off of SPARC and Solaris at worst. Nonetheless, after some time spent with Oracle management, I expressed my improved confidence in the new hardware team that Oracle had assembled and their new roadmap for SPARC processors after the successive debacles of the UltraSPARC-5 and Rock processors under Sun’s stewardship.

Two and a half years later, it is obvious that Oracle has delivered on its commitments regarding SPARC and is continuing its investments in SPARC CPU and system design as well as its Solaris OS technology. The latest evolution of SPARC technology, the SPARC T5 and the soon-to-be-announced M5, continue the evolution and design practices set forth by Oracle’s Rick Hetherington in 2010 — incremental evolution of a common set of SPARC cores, differentiation by variation of core count, threads and cache as opposed to fundamental architecture, and a reliable multi-year performance progression of cores and system scalability.

Geek Stuff – New SPARC Hardware

Read more

Dell Is On A Quest For Software

Glenn O'Donnell

 

One of the many hilarious scenes in Monty Python and the Holy Grail is the "Bridge of Death" sequence. This week's news that Dell plans to acquire Quest Software makes one think of a slight twist to this scene:

Bridgekeeper:   "What ... is your name?"
Traveler:           "John Swainson of Dell."
Bridgekeeper:   "What ... is your quest?"
Traveler:           "Hey! That's not a bad idea!"

We suspect Dell's process was more methodical than that!

This acquisition was not a surprise, of course. All along, it has been obvious that Dell needed stronger assets in software as it continues on its quest to avoid the Gorge of Eternal Peril that is spanned by the Bridge of Death. When the company announced that John Swainson was joining to lead the newly formed software group, astute industry watchers knew the next steps would include an ambitious acquisition. We predicted such an acquisition would be one of Swainson's first moves, and after only four months on the job, indeed it was.

Read more

Oracle Open World Part 3 - Oracle’s “Engineered Systems”: Astute Integration Or Inspired Folly?

Richard Fichera

OK, out of respect for your time, now that I’ve caught you with a title that promises some drama I’ll cut to the chase and tell you that I definitely lean toward the former. Having spent a couple of days here at Oracle Open World poking around the various flavors of Engineered Systems, including the established Exadata and Exalogic along with the new SPARC Super Cluster (all of a week old) and the newly announced Exalytic system for big data analytics, I am pretty convinced that they represent an intelligent and modular set of optimized platforms for specific workloads. In addition to being modular, they give me the strong impression of a “composable” architecture – the various elements of processing nodes, Oracle storage nodes, ZFS file nodes and other components can clearly be recombined over time as customer requirements dictate, either as standard products or as custom configurations.

Read more

Oracle Open World Part 2 – Flash Mobs And The Quest For Performance

Richard Fichera

Well actually I meant mobs of flash, but I couldn’t resist the word play. Although, come to think of it, flash mobs might be the right way to describe the density of flash memory system vendors here at Oracle Open World. Walking around the exhibits it seems as if every other booth is occupied by someone selling flash memory systems to accelerate Oracle’s database, and all of them claiming to be: 1) faster than anything that Oracle, who already integrates flash into its systems, offers, and 2) faster and/or cheaper than the other flash vendor two booths down the aisle.

All joking aside, the proliferation of flash memory suppliers is pretty amazing, although a venue devoted to the world’s most popular database would be exactly where you might expect to find them. In one sense flash is nothing new – RAM disks, arrays of RAM configured to mimic a disk, have been around since the 1970s but were small and really expensive, and never got on a cost and volume curve to drive them into a mass-market product. Flash, benefitting not only from the inherent economies of semiconductor technology but also from the drivers of consumer volumes, has the transition to a cost that makes it a reasonable alternative for some use case, with database acceleration being probably the most compelling. This explains why the flash vendors are gathered here in San Francisco this week to tout their wares – this is the richest collection of potential customers they will ever see in one place.

Read more

Intel Rewards Itanium Loyalists With Performance And RAS Features In Poulson

Richard Fichera

Intel Raises the Curtain on Poulson

At the Hot Chips conference last week, Intel disclosed additional details about the upcoming Poulson Itanium CPU due for shipment early next year. For Itanium loyalists (essentially committed HP-UX customers) the disclosures are a ray of sunshine among the gloomy news that has been the lot of Itanium devotees recently.

Poulson will bring several significant improvements to Itanium in both performance and reliability. On the performance side, we have significant improvements on several fronts:

  • Process – Poulson will be manufactured with the same 32 nm semiconductor process that will (at least for a while) be driving the high-end Xeon processors. This is goodness all around – performance will improve and Intel now can load its latest production lines more efficiently.
  • More cores and parallelism – Poulson will be an 8-core processor with a whopping 54 MB of on-chip cache, and Intel has doubled the width of the multi-issue instruction pipeline, from 6 to 12 instructions. Combined with improved hyperthreading, the combination of 2X cores and 2X the total number of potential instructions executed per clock cycle by each core hints at impressive performance gains.
  • Architecture and instruction tweaks – Intel has added additional instructions based on analysis of workloads. This kind of tuning of processor architectures seldom results in major gains in performance, but every small increment helps.
Read more

Recent Benchmarks Reinforce Scalability Of x86 Servers

Richard Fichera

Over the past months server vendors have been announcing benchmark results for systems incorporating Intel’s high-end x86 CPU, the E7, with HP trumping all existing benchmarks with their recently announced numbers (although, as noted in x86 Servers Hit The High Notes, the results are clustered within a few percent each other). HP recently announced new performance numbers for their ProLiant DL980, their high-end 8-socket x86 server using the newest Intel E7 processors. With up to 10 cores, these new processors can bring up to 80 cores to bear on large problems such as database, ERP and other enterprise applications.

The performance results on the SAP SD 2-Tier benchmark, for example, at 25160 SD users, show a performance improvement of 35% over the previous high-water mark of 18635. The results seem to scale almost exactly with the product of core count x clock speed, indicating that both the system hardware and the supporting OS, in this case Windows Server 2008, are not at their scalability limits. This gives us confidence that subsequent spins of the CPU will in turn yield further performance increases before hitting system of OS limitations. Results from other benchmarks show similar patterns as well.

Key takeaways for I&O professionals include:

  • Expect to see at least 25% to 35% throughput improvements in many workloads with systems based on the latest the high-performance PCUs from Intel. In situations where data center space and cooling resources are constrained this can be a significant boost for a same-footprint upgrade of a high-end system.
  • For Unix to Linux migrations, target platform scalability continues become less of an issue.

HP Versus Oracle -- From Ugly To Uglier As HP Takes To The Courts

Richard Fichera

On June 15, HP announced that it had filed suit against Oracle, saying in a statement:

“HP is seeking the court’s assistance to compel Oracle to:

  • Reverse its decision to discontinue all software development on the Itanium platform

  • Reaffirm its commitment to offer its product suite on HP platforms, including Itanium;

  • Immediately reset the Itanium core processor licensing factor consistent with the model prior to December 1, 2010 for RISC/EPIC systems

 HP also seeks:

  • Injunctive relief, including an order prohibiting Oracle from making false and misleading statements regarding the Itanium microprocessor or HP’s Itanium-based servers and remedying the harm caused by Oracle’s conduct.

  • Damages and fees and other standard remedies available in cases of this nature.”

Read more

Oracle Says No To Itanium – Embarrassment For Intel, Big Problem For HP

Richard Fichera

Oracle announced today that it is going to cease development for Itanium across its product line, stating that itbelieved, after consultation with Intel management, that x86 was Intel’s strategic platform. Intel of course responded with a press release that specifically stated that there were at least two additional Itanium products in active development – Poulsen (which has seen its initial specifications, if not availability, announced), and Kittson, of which little is known.

This is a huge move, and one that seems like a kick carefully aimed at the you know what’s of HP’s Itanium-based server business, which competes directly with Oracle’s SPARC-based Unix servers. If Oracle stays the course in the face of what will certainly be immense pressure from HP, mild censure from Intel, and consternation on the part of many large customers, the consequences are pretty obvious:

  • Intel loses prestige, credibility for Itanium, and a potential drop-off of business from its only large Itanium customer. Nonetheless, the majority of Intel’s server business is x86, and it will, in the end, suffer only a token loss of revenue. Intel’s response to this move by Oracle will be muted – public defense of Itanium, but no fireworks.
Read more