Cisco UCS at Five Years – Successful Disruption and a New Status-Quo

Richard Fichera

March Madness – Five Years Ago

It was five years ago, March 2009, when Cisco formally announced  “Project California,” its (possibly intentionally) worst-kept secret, as Cisco Unified Computing System. At the time, I was working at Hewlett Packard, and our collective feelings as we realized that Cisco really did intend to challenge us in the server market were a mixed bag. Some of us were amused at their presumption, others were concerned that there might be something there, since we had odd bits and pieces of intelligence about the former Nuova, the Cisco spin-out/spin-in that developed UCS. Most of us were convinced that they would have trouble running a server business at margins we knew would be substantially lower than their margins in their core switch business. Sitting on top of our shiny, still relatively new HP c-Class BladeSystem, which had overtaken IBM’s BladeCenter as the leading blade product, we were collectively unconcerned, as well as puzzled about Cisco’s decision to upset a nice stable arrangement where IBM, HP and Dell sold possibly a Billion dollars’ worth of Cisco gear between them.

Fast Forward

Five years later, HP is still number one in blade server units and revenue, but Cisco appears to be now number two in blades, and closing in on number three world-wide in server sales as well. The numbers are impressive:

·         32,000 net new customers in five years, with 14,000 repeat customers

·         Claimed $2 Billion+ annual run-rate

·         Order growth rate claimed in “mid-30s” range, probably about three times the growth rate of any competing product line.

Lessons Learned

Read more

HP Shows its Next Generation Blade and Converged Infrastructure – No Revolution, but Strong Evolution

Richard Fichera

With the next major spin of Intel server CPUs due later this year, HP’s customers have been waiting for HP’s next iteration of its core c-Class BladeSystem, which has been on the market for almost 7 years without any major changes to its basic architecture. IBM made a major enhancement to its BladeCenter architecture, replacing it with the new Pure Systems, and Cisco’s offering is new enough that it should last for at least another three years without a major architectural refresh, leaving HP customers to wonder when HP was going to introduce its next blade enclosure, and whether it would be compatible with current products.

At their partner conference this week, HP announced a range of enhancements to its blade product line that on combination represent a strong evolution of the current product while maintaining compatibility with current investments. This positioning is similar to what IBM did with its BladeCenter to BladeCenter-H upgrade, preserving current customer investment and extending the life of the current server and peripheral modules for several more years.

Tech Stuff – What Was Announced

Among the goodies announced on February 19 was an assortment of performance and functionality enhancements, including:

  • Platinum enclosure — The centerpiece of the announcement was the new c7000 Platinum enclosure, which boosts the speed of the midplane signal paths from 10 GHz to 14GHz, for an increase of 40% in raw bandwidth of the critical midplane, across which all of the enclosure I/O travels. In addition to the increased bandwidth midplane, the new enclosure incorporates location aware sensors and also doubles the available storage bandwidth.
Read more

HP And Intel Announce Poulson And New Integrity Servers – Great News For A Select Few

Richard Fichera

On Tuesday November 8, after more than a year of pre-announcement disclosures that eventually left very little to the imagination, Intel finally announced the Itanium 9500, formerly known as Poulson. Added to this was the big surprise of HP announcing a refresh of its current line of Integrity servers, from blades to the large Superdome servers, with the new Itanium 9500.

As noted in an earlier post, the Itanium 9500 offers considerable performance improvements over its predecessors, and instantiated in HP’s new Integrity line it is positioned as delivering between 2X and 3X the performance per socket as previous Itanium 9300 (Tukwilla) systems at approximately the same price. For those remaining committed to Itanium and its attendant OS platforms, notably HP-UX, this is unmitigated good news. The fly in the ointment (I have never seen a fly in any ointment, but it does sound gross), of course, is HP’s dispute with Oracle. Despite the initial judgment in HP’s favor, the trial is a) not over yet, and b) Oracle has already filed for an early appeal of the initial verdict, which would ordinarily have to wait until the second phase of the trial, scheduled for next year, to finish. The net takeaway is that Oracle’s future availability on Itanium and HP-UX is not yet assured, so we really cannot advise the large number of Oracle users who will require Oracle 12 and later versions to relax yet.

Read more

HP Rolls Out BladeSystem Upgrades – Significant Improvements Aim To Fend Off IBM And Cisco

Richard Fichera

Overview

Earlier this week at its Discover customer event, HP announced a significant set of improvements to its already successful c-Class BladeSystem product line, which, despite continuing competitive pressure from IBM and the entry of Cisco into the market three years ago, still commands approximately 50% of the blade market. The significant components of this announcement fall into four major functional buckets – improved hardware, simplified and expanded storage features, new interconnects and I/O options, and serviceability enhancements. Among the highlights are:

  • Direct connection of HP 3PAR storage – One of the major drawbacks for block-mode storage with blades has always been the cost of the SAN to connect it to the blade enclosure. With the ability to connect an HP 3PAR storage array directly to the c-Class enclosure without any SAN components, HP has reduced both the cost and the complexity of storage for a wide class of applications that have storage requirements within the scope of a single storage array.
  • New blades – With this announcement, HP fills in the gaps in their blade portfolio, announcing a new Intel Xeon EN based BL-420 for entry requirements, an upgrade to the BL-465 to support the latest AMD 16-core Interlagos CPU, and the BL-660, a new single-width Xeon E5 based 4-socket blade. In addition, HP has expanded the capacity of the sidecar storage blade to 1.5 TB, enabling an 8-server and 12 TB + chassis configuration.
Read more

NVIDIA's VGX: Traction Control for Hosted Virtual Desktops

David Johnson

Driving in the snow is an experience normally reserved for those of us denizens of the northern climes who haven't yet figured out how to make a paycheck mixing Mai Tais in the Caymans. Behind the wheel in the snow, everything happens a little slower. Turn the wheel above 30 on the speedo and it could be a second or two before the car responds, and you'll overshoot the turn and take out the neighbor's shrubs.

Hosted Virtual Desktops are a bit like driving in the snow. Every link in the chain between the data on a hard drive in the datacenter and the pixels on the user's screen introduces a delay that the user perceives as lag, and the laws of physics apply. Too much lag or too much snow and it's hard to get anywhere, as citizens of Anchorage, Alaska after this years' record snowfalls, or anyone trying to use a hosted virtual desktop half a world away from the server will testify.

NVIDIA Brings Gaming Know-How to HVD
Last week I spent a day with NVIDIA's soft-spoken, enthusiastic CEO, Jensen Huang who put the whole latency issue for VDI into a practical perspective (thanks Jensen). These days, he says, home game consoles run about 100-150 milliseconds from the time a player hits the fire button to the time they see their plasma cannon blast away an opponent on the screen. For comparison, the blink of an eye is 200-400 milliseconds, and the best gamers can react to things they see on screen as fast as 50 milliseconds.

Latency in HVD is a Killer

Read more

Cisco’s Turn At Bat, Introduces Next Generation Of UCS

Richard Fichera

Next up in the 2012 lineup for the Intel E5 refresh cycle of its infrastructure offerings is Cisco, with its announcement last week of what it refers to as its third generation of fabric computing. Cisco announced a combination of tangible improvements to both the servers and the accompanying fabric components, as well as some commitments for additional hardware and a major enhancement of its UCS Manager software immediately and later in 2012. Highlights include:

  • New servers – No surprise here, Cisco is upgrading its servers to the new Intel CPU offerings, leading with its high-volume B200 blade server and two C-Series rack-mount servers, one a general-purpose platform and the other targeted at storage-intensive requirements. On paper, the basic components of these servers sound similar to competitors – new E5 COUs, faster I/O, and more memory. In addition to the servers announced for March availability, Cisco stated that it would be delivering additional models for ultra-dense computing and mission-critical enterprise workloads later in the year.
  • Fabric improvements – Because Cisco has a relatively unique architecture, it also focused on upgrades to the UCS fabric in three areas: server, enclosure, and top-level interconnect. The servers now have an optional improved virtual NIC card with support for up to 128 VLANs per adapter and two 20 GB ports per adapter. One in on the motherboard and another can be plugged in as a mezzanine card, giving up to 80 GB bandwidth to each server. The Fabric Interconnect, the component that connects each enclosure to the top-level Fabric Interconnect, has seen its bandwidth doubled to a maximum of 160 GB. The Fabric Interconnect, the top of the UCS management hierarchy and interface to the rest of the enterprise network, has been up graded to a maximum of 96 universal 10Gb ports (divided between downlinks to the blade enclosures and uplinks to the enterprise fabric.
Read more

Intel (Finally) Announces Its Latest Server Processors — Better, Faster, Cooler

Richard Fichera

Today, after two of its largest partners have already announced their systems portfolios that will use it, Intel finally announced one of the worst-kept secrets in the industry: the Xeon E5-2600 family of processors.

OK, now that I’ve got in my jab at the absurdity of the announcement scheduling, let’s look at the thing itself. In a nutshell, these new processors, based on the previous-generation 32 nm production process of the Xeon 5600 series but incorporating the new “Sandy Bridge” architecture, are, in fact, a big deal. They incorporate several architectural innovations and will bring major improvements in power efficiency and performance to servers. Highlights include:

  • Performance improvements on selected benchmarks of up to 80% above the previous Xeon 5600 CPUs, apparently due to both improved CPU architecture and larger memory capacity (up to 24 DIMMs at 32 GB per DIMM equals a whopping 768 GB capacity for a two-socket, eight-core/socket server).
  • Improved I/O architecture, including an on-chip PCIe 3 controller and a special mode that allows I/O controllers to write directly to the CPU cache without a round trip to memory — a feature that only a handful of I/O device developers will use, but one that contributes to improved I/O performance and lowers CPU overhead during PCIe I/O.
  • Significantly improved energy efficiency, with the SPECpower_ssj2008 benchmark showing a 50% improvement in performance per watt over previous models.
Read more

Pushing The Envelope - SeaMicro Introduces Low-Power Xeon Servers

Richard Fichera

In late 2010 I noted that startup SeaMicro had introduced an ultra-dense server using Intel Atom chips in an innovative fabric-based architecture that allowed them to factor out much of the power overhead from a large multi-CPU server ( http://blogs.forrester.com/richard_fichera/10-09-21-little_servers_big_applications_intel_developer_forum). Along with many observers, I noted that the original SeaMicro server was well-suited to many light-weight edge processing tasks, but that the system would not support more traditional compute-intensive tasks due to the performance of the Atom core. I was, however, quite taken with the basic architecture, which uses a proprietary high-speed (1.28 Tb/s) 3D mesh interconnect to allow the CPU cores to share network, BIOS and disk resources that are normally replicated on a per-server in conventional designs, with commensurate reductions in power and an increase in density.

Read more

HP Expands Its x86 Options With Mission-Critical Program – Defense And Offense Combined

Richard Fichera

Today HP announced a new set of technology programs and future products designed to move x86 server technology for both Windows and Linux more fully into the realm of truly mission-critical computing. My interpretation of these moves is that it is both a combined defensive and pro-active offensive action on HP’s part that will both protect them as their Itanium/HP-UX portfolio slowly declines as well as offer attractive and potentially unique options for both current and future customers who want to deploy increasingly critical services on x86 platforms.

What’s Coming?

Bearing in mind that the earliest of these elements will not be in place until approximately mid-2012, the key elements that HP is currently disclosing are:

ServiceGuard for Linux – This is a big win for Linux users on HP, and removes a major operational and architectural hurdle for HP-UX migrations. ServiceGuard is a highly regarded clustering and HA facility on HP-UX, and includes many features for local and geographically distributed HA. The lack of ServiceGuard is often cited as a risk in HP-UX migrations. The availability of ServiceGuard by mid-2012 will remove yet another barrier to smooth migration from HP-UX to Linux, and will help make sure that HP retains the business as it migrates from HP-UX.

Analysis engine for x86 – Analysis engine is internal software that provides system diagnostics, predictive failure analysis and self-repair on HP-UX systems. With an uncommitted delivery date, HP will port this to selected x86 servers. My guess is that since the analysis engine probably requires some level of hardware assist, the analysis engine will be paired with the next item on the list…

Read more

A Rift At The High-End For Server Requirements?

Richard Fichera

We have been repeatedly reminded that the requirements of hyper-scale cloud properties are different from those of the mainstream enterprise, but I am now beginning to suspect that the top strata of the traditional enterprise may be leaning in the same direction. This suspicion has been triggered by the combination of a recent day in NY visiting I&O groups in a handful of very large companies and a number of unrelated client interactions.

The pattern that I see developing is one of “haves” versus “have nots” in terms of their ability to execute on their technology vision with internal resources. The “haves” are the traditional large sophisticated corporations, with a high concentration in financial services. They have sophisticated IT groups, are capable fo writing extremely complex systems management and operations software, and typically own and manage 10,000 servers or more. The have nots are the ones with more modest skills and abilities, who may own 1000s of servers, but tend to be less advanced than the core FSI companies in terms of their ability to integrate and optimize their infrastructure.

The divergence in requirements comes from what they expect and want from their primary system vendors. The have nots are companies who understand their limitations and are looking for help form their vendors in the form of converged infrastructures, new virtualization management tools, and deeper integration of management software to automate operational tasks, These are people who buy HP c-Class, Cisco UCS, for example, and then add vendor-supplied and ISV management and automation tools on top of them in an attempt to control complexity and costs. They are willing to accept deeper vendor lock-in in exchange for the benefits of the advanced capabilities.

Read more