Mobilize The Internet Of Things

Dan Bieler

Businesses can obtain major benefits — including better customer experiences and operational excellence — from the internet of things (IoT) by extracting insights from connected objects and delivering feature-rich connected products.

The mobile mind shift requires businesses to proactively support these IoT benefits for nonstationary connected objects that exist as part of IoT solutions. In particular, the IoT forces businesses to acquaint themselves with the implications of mobility in the IoT context for connectivity, security, compliance with privacy and other regulations, and data management for mobility. This means that:

  • Mobile technologies are central to most IoT solutions. To date, technology managers have mostly focused on enterprise mobility management (EMM) as part of their mobile activities. This narrow focus is insufficient for IoT solutions.
  • Mobile IoT is not a technology revolution but a fundamental business process transformation. Mobility requires managers not only to deploy mobile technologies but also to exploit them to support specific business process requirements.
  • Mobile technologies set the framework for IoT solutions. Mobile has distinct implications for aspects like broadband availability, data management, security, and local data compliance. Ignoring these will undermine your IoT initiatives and return on investment.

My new report, Mobilize The Internet Of Things, provides advice and insights for businesses on addressing these mobile challenges in the context of planning for and implementing IoT solutions.

Navigating The New Insights Service Provider Landscape

Jennifer Belissent, Ph.D.

“We are in the business of building [FILL IN THE BLANK], why would we build an insights platform out ourselves.” 

That sentiment will drive more and more companies to explore the insights services option.  Many already feel like they are chasing a moving target. Data and analytics practices are evolving quickly with new tools and techniques moving the bar higher and higher. Not to mention the explosion of data sources, and the dearth of skilled talent out there.  As executives become more aware of the value of data and analytics, they become increasingly dissatisfied with what their organizations can deliver:  in 2014 53% of decision-makers were satisfied with internal analytics capabilities but by 2015 those satisfied fell to 42%.  These are the leaders who will look for external service providers to deliver insights. They realize they might not get there themselves.

The sentiment expressed in the quote above was actually from a consumer packaged goods company.  For its execs winning in cities has become paramount.  As urbanization increases, cities provide big opportunities. But not all cities are alike and differentiating what they take to a specific market requires deep local knowledge – and a lot of diverse data.  To create hyperlocal, timely, and contextually relevant offers, the company needs data on local news, events, and weather as well as geo-tagged social data. All of that must be combined with its own internal and partner data.  

Read more

Enrich Customer Insights With Unstructured Data

Boris Evelson

Over the past several years, Forrester's research has written extensively about the age of the customer. Forrester believes that only the enterprises that are obsessed with winning, serving, and retaining customers will thrive in this highly competitive, customer-centric economy. But in order to get a full view of customer behavior, sentiment, emotion, and intentions, Information Management professionals must help enterprises leverage all the data at their disposal, not just structured, but also unstructured. Alas, that's still an elusive goal, as most enterprises leverage only 40% of structured data and 31% of unstructured data for business and customer insights and decision-making.

So what do you need to do to start enriching your customer insights with unstructured data ? First, get your yext analysis terminology straight. For Information Management pros, the process of text mining and text analytics should not be a black box, where unstructured text goes in and structured information comes out. But today, there is a lot of market confusion on the terminology and process of text analytics. The market, both vendors and users, often uses the terms text mining and text analytics interchangeably; Forrester makes a distinction and recommends that Information Management pros working on text mining/text analytics initiatives adopt the following terminology:

Read more

It's 10 O'Clock! Do You Know If Your BI Supports Actual Verifiable Facts?

Boris Evelson

Delivering broad access to data and analytics to a diverse base of users is an intimidating task, yet it is an essential foundation to becoming an insights-driven organization. To win and keep customers in an increasingly competitive world, firms need to take advantage of the huge swaths of data available and put it into the hands of more users. To do this, business intelligence (BI) pros must evolve disjointed and convoluted data and analytics practices into well-orchestrated systems of insight that deliver actionable information. But implementing digital insights is just the first step with these systems — and few hit the bull's eye the first time. Continuously learning from previous insights and their results makes future efforts more efficient and effective. This is a key capability for the next-generation BI, what Forrester calls systems of insight.

"It's 10 o'clock! Do you know if your insights support actual verifiable facts?" This is a real challenge, as measuring report and dashboard effectiveness today involves mostly discipline and processes, not technology. For example, if a data mining analysis predicted a certain number of fraudulent transactions, do you have the discipline and processes to go back and verify whether the prediction came true? Or if a metrics dashboard was flashing red, telling you that inventory levels were too low for the current business environment, and the signal caused you to order more widgets, do you verify if this was a good or a bad decision? Did you make or lose money on the extra inventory you ordered? Organizations are still struggling with this ultimate measure of BI effectiveness. Only 8% of Forrester clients report robust capabilities for such continuous improvement, and 39% report just a few basic capabilities.

Read more

Insight Platforms Have Arrived

Brian  Hopkins

Are you lost in a confusing soup of vendor-speak about what their data analytics stack actually offers? Big data, data platforms, advanced analytics, data lakes, real-time everything, streaming, the IoT, customer analytics, digital intelligence, real-time interaction, customer decision hubs, new-stuff-as-a-service, the list goes on.

Recognize the convergence happening as vendors evolve their technologies from doing just one thing like predictive analytics or search to many things together. For example, data integration, data warehouse, and BI tools are typically sold separately, but breakout vendor Looker combines data integration, model governance, basic BI, and a runtime for data applications all in one software layer that sits on your data lake. As another example, consider predictive analytics vendor Alpine Data Labs or SAS Viya from SAS. These vendors have built out a lot of data management and insight delivery tooling into their platforms because without it users struggle to maximize value. Another trend is big data search vendors like Maana that now also include hooks for predictive model execution as well as more data management functions. Lastly, systems integrators are packaging their IP and offering it as a data management and analytics integrated product — for example, Saama’s Fluid Analytics Engine or Infosys’ Information Platform.

In fact, the list of innovative vendors blending data management, analytics, and insight execution technology is growing by leaps and bounds. To address this trend, I just published a report, Insight Platforms Accelerate Digital Transformation, in which I created a broad definition that labels this trend:

Read more

The Data Digest: The Yin And Yang Of Consumer Decisions

Anjali Lai

The tug of war between reason and emotion has fueled contentious debate since the days of Socrates. But, Socrates and subsequent thinkers didn’t anticipate the influx of data in our contemporary world. Today, our modern media saturation, infinite social connection, and sensor-laden bodies and buildings mean that we create, consult, and critique data more than ever before. How does the vast amount of information – that is now literally at our fingertips – actually influence our daily decisions, and why?

Forrester’s Consumer Technographics® survey data proves that individuals are steeped in information and are keenly aware of it. In fact, the insight shows that US online adults increasingly lean on data to make daily choices across spheres of life:

Read more

15 "True" Streaming Analytics Platforms For Real-Time Everything

Mike Gualtieri

Streaming Analytics Captures Real-Time Intelligence

Streaming AnalyticsMost enterprises aren't fully exploiting real-time streaming data that flows from IoT devices and mobile, web, and enterprise apps. Streaming analytics is essential for real-time insights and bringing real-time context to apps. Don't dismiss streaming analytics as a form of "traditional analytics" use for postmortem analysis. Far from it —  streaming analytics analyzes data right now, when it can be analyzed and put to good use to make applications of all kinds (including IoT) contextual and smarter. Forrester defines streaming analytics as:

Software that can filter, aggregate, enrich, and analyze a high throughput of data from multiple, disparate live data sources and in any data format to identify simple and complex patterns to provide applications with context to detect opportune situations, automate immediate actions, and dynamically adapt.

Forrester Wave: Big Data Streaming Analytics, Q1 2016

To help enterprises understand what commercial and open source options are available, Rowan Curran and I evaluated 15 streaming analytics vendors using Forrester's Wave methodology. Forrester clients can read the full report to understand the market category and see the detailed criteria, scores, and ranking of the vendors. Here is a summary of the 15 vendors solutions we evaluated listed in alphabetical order:

Read more

Streaming Analytics Will Transform The Internet Of Things Into The Internet Of Analytics

Rowan Curran

The challenges of how to manage, ingest, store, analyze, and act upon data in the IoT are beginning to bear down on enterprises. The honeymoon talk of ‘billions and billions of devices’ is over and it’s time to get down to the dirt of how to generate value from all these connected devices. Streaming analytics platforms, already architected to handle IoT data as it streams into the data center, are being extended to deploy out to gateway devices (such as wireless access points) and even out to edge devices (such as manufacturing equipment) to extend the intelligence out to where data is generated and actions occur.

Forrester clients can read the full details of our analysis here and start the process of turning slow processes and weekly analytical batches into the immediate insights needed to support today’s dynamic business environment.

Businesses Need To Prepare For New Digital Realities

Dan Bieler

Photo: Bergmann

At Mobile World Congress 2016, GE outlined some fundamental insights about the digital transformation efforts of industrial businesses. William Ruh, CEO for GE Digital, a US$6 billion business of General Electric, shared valuable insights about the digital transformation process that industrial businesses need to tackle.

Businesses must focus on those activities that they can transform into digital business models. Not every industrial activity can become a digital business, but it will be impossible to succeed in digital transformation by developing a digital business and an industrial business and then operating them side by side indefinitely. GE sold 40% of its business activities because it felt that it could not transform them into digital businesses. For those industrial activities that can become digital businesses, executives need to be aware that:

  • Every industrial worker has to develop digital DNA. Industrial workers and mechanical engineers have to be comfortable interacting with digital systems. At GE, mechanical engineers have to design a locomotive in such a way that they can place a local data center inside it. Every industrial worker will have to have analytics skills, whether that’s the ability to create sensible and reliable data sets or to analyze and interpret these data sets.
Read more

The Data Digest: Turn Data Monotony Into Data Mastery

Anjali Lai

Next time you find yourself wading through data points, sifting out patterns from the noise, hoping to catch the rare pearl of insight to affix to your business plan, know that you are not alone. Employees worldwide incessantly engage with data, and the companies they work for urgently execute on data-driven strategies in a race for better, faster results. Data pervades the workplace and continues to grow in terms of volume and variety: Research suggests that by 2020, the number of connected devices will more than triple, tens of thousands of data scientist jobs will be in high demand, and the majority of sales decisions will be data-driven.

But using data regularly doesn’t mean that employees truly understand it – or are comfortable with data practices. Specific obstacles prevent individuals – at the top and bottom of the organization – from eliciting effective insight. Forrester’s Business Technographics® and ConsumerVoices MROC data shows that while individuals rely heavily on data for decision-making, they still grapple with key challenges regarding the accuracy, volume, value, and security of the data they use:

Read more