My Three Assumptions For Why The Next Generation Of SW Innovation Will Be Cognitive!

Diego Lo Giudice

I am just back from the first ever Cognitive Computing Forum organized by DATAVERSITY in San Jose, California. I am not new to artificial intelligence (AI), and was a software developer in the early days of AI when I was just out of university. Back then, if you worked in AI, you would be called a SW Knowledge Engineer, and you would use symbolic programming (LISP) and first order logic programming (Prolog) or predicate calculus (MRS) to develop “intelligent” programs. Lot’s of research was done on knowledge representation and tools to support knowledge based engineers in developing applications that by nature required heuristic problem solving. Heuristics are necessary when problems are undefined, non-linear and complex. Deciding which financial product you should buy based on your risk tolerance, amount you are willing to invest, and personal objectives is a typical problem we used to solve with AI.

Fast forward 25 years, and AI is back, has a new name, it is now called cognitive computing. An old friend of mine, who’s never left the field, says, “AI has never really gone away, but has undergone some major fundamental changes.” Perhaps it never really went away from labs, research and very nich business areas. The change, however, is heavily about the context: hardware and software scale related constraints are gone, and there’s tons of data/knowledge digitally available (ironically AI missed big data 25 years ago!). But this is not what I want to focus on.

Read more