The Dark Side of the Database of Affinity?

Nate Elliott

Last year we introduced a concept called the Database of Affinity — a catalogue of people's tastes and preferences collected by observing their social behaviors — and proposed that the greatest marketing value of social media won't come from marketing to people on social sites, but rather using this database of affinity to improve the marketing that happens everywhere else. And in 2013, several social networks started to pursue this opportunity: For instance, Facebook launched an artificial intelligence research team and Google started selling "affinity segments" targeting on its properties.

But are social sites going too far in their effort to build the database of affinity? Perhaps. Recently we've seen reports that some social networks are tracking not just the information that you choose to share, but even information you choose not to share. For instance, Facebook has admitted to studying "aborted posts" — the things people type into Facebook (as status updates, in comments, and on other people's timelines) but then choose not to post. Likewise, both Google and Foursquare apparently use their mobile apps track users' locations at all times, even when people aren't actively using those company's apps.

Read more

Why Google - Not Facebook - Will Build The Database Of Affinity

Nate Elliott

Recently we described an idea called the database of affinity: A catalogue of people’s tastes and preferences collected by observing their social behaviors on sites like Facebook and Twitter. Why are we so excited about this idea? Because if Facebook or Twitter or some other company can effectively harness the data from all the likes and shares and votes and reviews they record, they could bring untold rigor, discipline, and success to brand advertising.

But exploiting the database of affinity won’t be easy. Any company hoping to turn affinity data into something marketers can use will need three things:

  1. Lots of affinity data from lots of sources. The raw data required to build a functional database of affinity doesn’t live in just one place. Facebook controls the most "like" data, recording more than 80 billion per month at last check. But Twitter records more "talking" than anyone else (1.5 billion tweets per month); Amazon collects the most reviews (well over 6 million per month); and Google’s YouTube and Google Display Network have data on how a billion people prefer to spend their time.
  2. The ability to bring meaning to that data. It’s easy to draw simple conclusions from affinity data: If you ‘like’ snowboarding you might like to see an ad for energy drinks. But the real value in affinity data won’t be unlocked until we can find hidden combinations of affinity that work for marketing. That’ll require technologies and teams that can do some serious data analysis — as well as a real-time feedback loop to determine whether people really are interested in the ads targeted to them based on such complex assumptions.
Read more

The Database of Affinity Can Bring Discipline To Brand Marketing

Nate Elliott

For years, brand marketers have guessed at people’s affinities from the barest of demographic, geographic, and contextual clues. We deduce that Midwestern men prefer pickup trucks and that people watching extreme sports like energy drinks, and then we spend billions advertising to these inferred affinities.

But today, we no longer have to guess. Every day huge numbers of people online tell us what they like. They do this by clicking a ‘like’ button, of course — but there are many other ways people express affinity: talking about things on Twitter and in blogs; reviewing things on Amazon and Yelp; spending time with content on YouTube (and telling us where they’re spending their offline time on Foursquare); and sharing things through both public and private social channels.

People’s rush to post their affinities online recalls another flood of data that began a decade ago: the explosion in online searches. John Battelle once described the data created by search as the “database of intentions,” which I’d define as “a catalogue of people’s needs and desires collected by observing their search behaviors.” In the same way, the result of all these online expressions of “liking” has created the “database of affinity,” which Forrester defines as:

A catalogue of people’s tastes and preferences collected by observing their social behaviors.  

Read more