5 Reasons Hadoop Is Kicking Can And Taking Names

Hadoop’s momentum is unstoppable as its open source roots grow wildly into enterprises. Its refreshingly unique approach to data management is transforming how companies store, process, analyze, and share big data. Forrester believes that Hadoop will become must-have infrastructure for large enterprises. If you have lots of data, there is a sweet spot for Hadoop in your organization.  Here are five reasons firms should adopt Hadoop today:

  1. Build a data lake with the Hadoop file system (HDFS). Firms leave potentially valuable data on the cutting-room floor. A core component of Hadoop is its distributed file system, which can store huge files and many files to scale linearly across three, 10, or 1,000 commodity nodes. Firms can use Hadoop data lakes to break down data silos across the enterprise and commingle data from CRM, ERP, clickstreams, system logs, mobile GPS, and just about any other structured or unstructured data that might contain previously undiscovered insights. Why limit yourself to wading in multiple kiddie pools when you can dive for treasure chests at the bottom of the data lake?
  2. Enjoy cheap, quick processing with MapReduce. You’ve poured all of your data into the lake — now you have to process it. Hadoop MapReduce is a distributed data processing framework that brings the processing to the data in a highly parallel fashion to process and analyze data. Instead of serially reading data from files, MapReduce pushes the processing out to the individual Hadoop nodes where the data resides. The result: Large amounts of data can be processed in parallel in minutes or hours rather than in days. Now you know why Hadoop’s origins stem from monstrous data processing use cases at Google and Yahoo.
Read more