Data Quality And Data Science Are Not Polar Opposites

Big data gurus have said that data quality isn’t important for big data. Good enough is good enough. However, business stakeholders still complain about poor data quality. In fact, when Forrester surveyed customer intelligence professionals, the ability to integrate data and manage data quality are the top two factors holding customer intelligence back.

So, do big data gurus have it wrong? Sort of . . .

I had the chance to attend and present at a marketing event put on by MITX last week in Boston that focused on data science for marketing and customer experience. I recommend all data and big data professionals do this. Here is why. How marketers and agencies talk about big data and data science is different than how IT talks about it. This isn’t just a language barrier, it’s a philosophy barrier. Let’s look at this closer:

  • Data is totals. When IT talks about data, it’s talking of the physical elements stored in systems. When marketing talks about data, it’s referring to the totals and calculation outputs from analysis.
  • Quality is completeness. At the MITX event, Panera Bread was asked, how do they understand customers that pay cash? This lack of data didn’t hinder analysis. Panera looked at customers in their loyalty program and promotions that paid cash to make assumptions about this segment and their behavior. Analytics was the data quality tool that completed the customer picture.
  • Data rules are algorithms. When rules are applied to data, these are more aligned to segmentation and status that would be input into personalized customer interaction. Data rules are not about transformation to marketers.
Read more