Will Privacy Concerns Stop Or Stunt The Power Of Predictive Analytics

The power of predictive analytics in the age of Big Data is super-cool, but will privacy concerns stop or stunt it's adoption? Watch this episode of Forrester TechnoPolitics with Eric Siegel, author of Predictive Analytics: The Power to Predict Who Will Click, Lie, Buy, or Die to find out. 

About Forrester TechnoPolitics

Read more

Maximize Your Chances Of Business Intelligence Success

Too little data, too much data, inaccessible data, reports and dashboard that take too long to produce and often aren’t fit for purpose, analytics tools that can only be used by a handful of trained specialists – the list of complaints about business intelligence (BI) delivery is long, and IT is often seen as part of the problem. At the same time, BI has been a top implementation priority for organizations for a number of years now, as firms clearly recognize the value of data and analytics when it comes to improving decisions and outcomes.

So what can you do to make sure that your BI initiative doesn't end up on the scrap heap of failed projects? Seeking answers to this question isn't unique to BI projects — but there is an added sense of urgency in the BI context, given that BI-related endeavors are typically difficult to get off the ground, and there are horror stories aplenty of big-ticket BI investments that haven’t yielded the desired benefit.

In a recent research project, we set out to discover what sets apart successful BI projects from those that struggle. The best practices we identified may seem obvious, but they are what differentiates those whose BI projects fail to meet business needs (or fail altogether) from those whose projects are successful. Overall, it’s about finding the right balance between business and IT when it comes to responsibilities and tasks – neither party can go it alone. The six key best practices are:

·         Put the business into business intelligence.

·         Be agile, and aim to deliver self-service.

·         Establish a solid foundation for your data as well your BI initiative.

Read more

Get ready for BI change

Market conditions are changing quickly; firms need to make the best possible business decisions at the right time and base them on timely, accurate, and relevant information from business intelligence (BI) solutions. The repercussions of not handling BI change well are especially painful and may include lost revenue, lower staff morale and productivity, continued proliferation of shadow IT BI applications, and unwanted employee departures. Ineffective change management often lies in the process of preparing the people affected by change rather than in planning the technology implementation. Firms that fail to prepare employees for enterprise BI change early enough or well enough will be left behind. They need to implement a multifaceted series of activities ranging from management communication about why change is needed to in-depth, role-appropriate employee training. 

 
Why change management is so critical? Most strategic business events, like mergers, are high-risk initiatives involving major changes over two or more years; others, such as restructuring, must be implemented in six months. In the case of BI, some changes might need to happen within a few weeks or even days. All changes will lead to either achieving or failing to achieve a business result. There are seven major categories of business and organizational change:
  • People acquisitions
  • Technology acquisitions 
  • Business process changes 
  • New technology implementations 
  • Organizational transformations
  • Leadership changes
  • Changes to business process outsourcing or IT sourcing 
Read more

How to estimate cost of BI deployment

Initial business intelligence (BI) ployment efforts are often difficult to predict and may dwarf the investment you made in BI platform software. The effort and costs associated with professional services, whether you use internal staff or hire contractors, depend not only on the complexity of business requirements like metrics, measures, reports, dashboards, and alerts, but also on the number of data sources you are integrating, the complexity of your data integration processes, and logical and physical data modeling. At the very least Forrester recommends considering the following components and their complexity to estimate development, system integration and deployment effort:

  • Top down business requirements such number of 
    • Goals and objectives
    • Metrics, Measures
    • Attributes and dimensions
Read more