Data Science And "Closed-Loop" Analytics Changes Master Data Strategy

I had a conversation recently with Brian Lent, founder, chairman, and CTO of Medio. If you don’t know Brian, he has worked with companies such as Google and Amazon to build and hone their algorithms and is currently taking predictive analytics to mobile engagement. The perspective he brings as a data scientist not only has ramifications for big data analytics, but drastically shifts the paradigm for how we architect our master data and ensure quality.
 
We discussed big data analytics in the context of behavior and engagement. Think shopping carts and search. At the core, analytics is about the “closed loop.” It is, as Brian says, a rinse and repeat cycle. You gain insight for relevant engagement with a customer, you engage, then you take the results of that engagement and put them back into the analysis.
 
Sounds simple, but think about what that means for data management. Brian provided two principles:
  • Context is more important than source.
  • You need to know the customer.
Read more

Make Story-Telling The Goal Of Customer MDM

It is easy to get caught up in the source and target paradigm when implementing master data management. The logical model looms large to identify where master data resides for linkage and makes the project -- well -- logical.

If this is the first step in your customer MDM endeavor and creating a master data definition based on identifying relevant data elements, STOP!

The first step is to articulate the story that customer MDM will support. This is the customer MDM blueprint.  

For example, if the driving business strategy is to create a winning customer experience, customer MDM puts the customer definition at the center of what the customer experience looks like. The customer experience is the story. You need to understand and have data points for elements such as preferences, sentiment, lifestyle, and friends/relationships. These elements may be available within your CRM system, in social networks, with partners, and third-party data providers. The elements may be discrete or derived from analytics. If you only look for name, address, phone, and email, there is nothing about this definition that helps determine how you place that contact into context of engagement.

Ultimately, isn’t that what the business is asking for when they want the promised 360-degree view of the customer? Demands for complete, relevant, and timely are not grounded in the databases, data dictionaries, and integration/transformation processes of your warehouses and applications; they are grounded in the story. 

So, don’t start with the data. Start with the story you want to tell.