What Do BI Vendors Mean When They Say They Integrate With Hadoop

There's certainly a lot of hype out there about big data. As I previously wrote, some of it is indeed hype, but there are still many legitimate big data cases - I saw a great example during my last business trip. Hadoop certainly plays a key role in the big data revolution, so all business intelligence (BI) vendors are jumping on the bandwagon and saying that they integrate with Hadoop. But what does that really mean? First of all, Hadoop is not a single entity; it's a conglomeration of multiple projects, each addressing a certain niche within the Hadoop ecosystem, such as data access, data integration, DBMS, system management, reporting, analytics, data exploration, and much much more. To lift the veil of hype, I recommend that you ask your BI vendors the following questions

  1. Which specific Hadoop projects do you integrate with (HDFS, Hive, HBase, Pig, Sqoop, and many others)?
  2. Do you work with the community edition software or with commercial distributions from MapR, EMC/Greenplum, Hortonworks, or Cloudera? Have these vendors certified your Hadoop implementations?
  3. Do you have tools, utilities to help the client data into Hadoop in the first place (see comment from Birst)?
  4. Are you querying Hadoop data directly from your BI tools (reports, dashboards) or are you ingesting Hadoop data into your own DBMS? If the latter:
    1. Are you selecting Hadoop result sets using Hive?
    2. Are you ingesting Hadoop data using Sqoop?
    3. Is your ETL generating and pushing down Map Reduce jobs to Hadoop? Are you generating Pig scripts?
Read more

Data Quality Reboot Series For Big Data: Part 3 Risky Data, Risky Business?

When you last pulled up a chair to this blog we talked about data quality persistence and disposability for big data. The other side of the coin is, should you even do big data quality at all?

So, this blog is dedicated to stepping outside the comfort zone once again and into the world of chaos. Not only may you not want to persist in your data quality transformations, but you may not want to cleanse the data.

Current thinking: Purge poor data from your environment. Put the word “risk” in the same sentence as data quality and watch the hackles go up on data quality professionals. It is like using salt in your coffee instead of sugar. However, the biggest challenge I see many data quality professionals face is getting lost in all the data due to the fact that they need to remove risk to the business caused by bad data. In the world of big data, clearly you are not going to be able to cleanse all that data. A best practice is to identify critical data elements that have the most impact on the business and focus efforts there. Problem solved.

Not so fast. Even scoping the data quality effort may not be the right way to go. The time and effort it takes as well as the accessibility of the data may not meet business needs to get information quickly. The business has decided to take the risk, focusing on direction rather than precision.

Read more

BI In Russia And Israel

I recently had both the privilege and pleasure to do a deep dive into the cold and warm BI waters in Russia and Israel. Cold - because some of my experiences were sobering. Warm - because the reception could not have been more pleasant. My presentations were well attended (sponsored by www.in4media.ru in Russia and www.matrix.co.il in Israel), showing high levels of BI interest, adoption, experience, and expertise.  Challenges remain the same, as Russian and Israeli businesses struggle with BI governance, ownership, SDLC and PMO methodologies, data, and app integration just like the rest of the world. I spent long evening hours with a large global company in Israel that grew rapidly by M&A and is struggling with multiple strategic challenges: centralize or localize BI, vendor selection, end user empowerment, etc. Sound familiar?

But it was not all business as usual. A few interesting regional peculiarities did come out. For example, the "BI as a key competitive differentiator" message fell on mostly deaf ears in Russia, as Russian companies don't really compete against each other. Territories, brands, markets, and spheres of influence are handed top down from the government or negotiated in high-level deals behind closed doors. That is not to say, however, that BI in Russia is only used for reporting - multiple businesses are pushing BI to the limits such as advanced customer segmentation for better upsell/cross-sell rates. 

I was also pleasantly surprised and impressed a few times (and for those of you who know me well, you know that it's pretty hard to impress the old veteran):

Read more

Data Quality Reboot Series For Big Data: Part 2 Persistence Vs. Disposable Quality

We last spoke about how to reboot our thinking on master data to provide a more flexible and useful structure when working with big data. In the structured data world, having a model to work from provides comfort. However, there is an element of comfort and control that has to be given up with big data, and that is our definition and the underlying premise for data quality.

Current thinking: Persistence of cleansed data.For years data quality efforts have focused on finding and correcting bad data. We used the word “cleansing” to represent the removal of what we didn’t want, exterminating it like it was an infestation of bugs or rats. Knowing what your data is, what it should look like, and how to transform it into submission defined the data quality handbook. Whole practices were stood up to track data quality issues, establish workflows and teams to clean the data, and then reports were produced to show what was done. Accomplishment was the progress and maintenance of the number of duplicates, complete records, last update, conformance to standards, etc. Our reports may also be tied to our personal goals. Now comes big data — how do we cleanse and tame that beast?

Reboot: Disposability of data quality transformation. The answer to the above question is, maybe you don’t. The nature of big data doesn’t allow itself to traditional data quality practices. The volume may be too large for processing. The volatility and velocity of data change too frequently to manage. The variety of data, both in scale and visibility, is ambiguous.

Read more