What Does R Integration Really Mean For BI Platforms?

I just received yet another call from a reporter asking me to comment on yet another BI vendor announcing R integration. All leading BI vendors are embedding/integrating with R these days, so I was not sure what was really new in the announcement. I guess the real question is the level of integration. For example:

  • Since R is a scripting language, does a BI vendor provide point-and-click GUI to generate R code?
  • Can R routines leverage and take advantage of all of the BI metadata (data structures, definitions, etc.) without having to redefine it again just for R?
  • How easily can the output from R calculations (scores, rankings) be embedded in the BI reports and dashboards? Do the new scores just become automagically available for BI reports, or does somebody need to add them to BI data stores and metadata?
  • Can the BI vendor import/export R models based on PMML?
  • Is it a general R integration, or are there prebuilt vertical (industry specific) or domain (finance, HR, supply chain, risk, etc) metrics as part of a solution?
  • What server are R models executed in? Reporting server? Database server? Their own server?
  • Then there's the whole business of model design, management, and execution, which is usually the realm of advanced analytics platforms. How much of these capabilities does the BI vendor provide?

Did I get that right? Any other features/capabilities that really distinguish one BI/R integration from another? Really interested in hearing your comments.

The State Of Customer Analytics 2012

I’m excited to announce that our new research on how firms use customer analytics was just published today.  The new research reveals some interesting findings:

  • Customer analytics serves the customer lifecycle , but measurement is restricted to marketing activities. While customer analytics continues to drive acquisition and retention goals, firms continue to measure success of customer analytics using easy-to-track marketing metrics as opposed to deeper profitability or engagement measures.
  • Finding the right analytics talent remains challenging . It’s not the just the data. It’s not the just technology that hinders analytics success.  It’s the analytical skills required to use the data in creative ways, ask the right questions of the data, and use technology as a key enabler to advance sophistication in analytics.  We’ve talked about how customer intelligence (CI) professionals need a new breed of marketing scientist to elevate the consumption of customer analytics.
  • CI professionals are keen to use predictive analytics in customer-focused applications,  Forty percent of respondents to our Global Customer Analytics Adoption Survey  tell us that they have been using predictive analytics for less than three years, while more than 70% of respondents have been using descriptive analytics and BI-type reporting for more than 10 years. CI professionals have not yet fully leveraged the strengths of predictive analytics customer applications.
Read more