Canonical Information Models Play Important Role In API Layers, Increasing Service Reuse

I attended the third annual Canonical Model Management Forum, May 14-15, 2012, hosted by DigitalML at the hip Washington Plaza Hotel again this year. I saw even more signs than last year that canonical models are key to API layers that many firms are building to promote integration. But first, let me share some data from Forrester’s last survey on canonical modeling adoption that I presented at the forum:

As our data shows, this practice is becoming increasingly widespread in firms publishing services that deliver information. Some of the trends I highlighted in last year’s forum post are even more evident this year, such as canonical models’ increasing use in data access layers, as I depicted with this slide:

Read more

What's Your Big Data Score?

If you think the term "Big Data" is wishy washy waste, then you are not alone. Many struggle to find a definition of Big Data that is anything more than awe-inspiring hugeness. But Big Data is real if you have an actionable definition that you can use to answer the question: "Does my organization have Big Data?" Proposed is a definition that takes into account both the measure of data and the activities performed with the data. Be sure to scroll down to calculate your Big Data Score.

Big Data Can Be Measured

Big Data exhibits extremity across one or many of these three alliterate measures:

Read more

ARM Arrives – Calxeda Shows Real Hardware Running Linux

I said last year that this would happen sometime in the first half of this year, but for some reason my colleagues and clients have kept asking me exactly when we would see a real ARM server running a real OS. How about now?

 To copy from Calxeda’s most recent blog post:

“This week, Calxeda is showing a live Calxeda cluster running Ubuntu 12.04 LTS on real EnergyCore hardware at the Ubuntu Developer and Cloud Summit events in Oakland, CA. … This is the real deal; quad-core, w/ 4MB cache, secure management engine, and Calxeda’s fabric all up and running.”

This is a significant milestone for many reasons. It proves that Calxeda can indeed deliver a working server based on its scalable fabric architecture, although having HP signing up as a partner meant that this was essentially a non-issue, but still, proof is good. It also establishes that at least one Linux distribution provider, in this case Ubuntu, is willing to provide a real supported distribution. My guess is that Red Hat and Centos will jump on the bus fairly soon as well.

Most importantly, we can get on with the important work of characterizing real benchmarks on real systems with real OS support. HP’s discovery centers will certainly play a part in this process as well, and I am willing to bet that by the end of the summer we will have some compelling data on whether the ARM server will deliver on its performance and energy efficiency promises. It’s not a slam dunk guaranteed win – Intel has been steadily ratcheting up its energy efficiency, and the latest generation of x86 server from HP, IBM, Dell, and others show promise of much better throughput per watt than their predecessors. Add to that the demonstration of a Xeon-based system by Sea Micro (ironically now owned by AMD) that delivered Xeon CPUs at a 10 W per CPU power overhead, an unheard of efficiency.

Read more

IBM Rounds Out Its Linux Offerings With Power Linux

In the latest evolution of its Linux push, IBM has added to its non-x86 Linux server line with the introduction of new dedicated Power 7 rack and blade servers that only run Linux. “Hah!” you say. “Power already runs Linux, and quite well according to IBM.” This is indeed true, but when you look at the price/performance of Linux on standard Power, the picture is not quite as advantageous, with the higher cost of Power servers compared to x86 servers offsetting much if not all of the performance advantage.

Enter the new Flex System p24L (Linux) Compute Node blade for the new PureFlex system and the IBM PowerLinuxTM 7R2 rack server. Both are dedicated Linux-only systems with 2 Power 7 6/8 core, 4 threads/core processors, and are shipped with unlimited licenses for IBM’s PowerVM hypervisor. Most importantly, these systems, in exchange for the limitation that they will run only Linux, are priced competitively with similarly configured x86 systems from major competitors, and IBM is betting on the improvement in performance, shown by IBM-supplied benchmarks, to overcome any resistance to running Linux on a non-x86 system. Note that this is a different proposition than Linux running on an IFL in a zSeries, since the mainframe is usually not the entry for the customer — IBM typically sells to customers with existing mainframe, whereas with Power Linux they will also be attempting to sell to net new customers as well as established accounts.

Read more