NVIDIA's VGX: Traction Control for Hosted Virtual Desktops

Driving in the snow is an experience normally reserved for those of us denizens of the northern climes who haven't yet figured out how to make a paycheck mixing Mai Tais in the Caymans. Behind the wheel in the snow, everything happens a little slower. Turn the wheel above 30 on the speedo and it could be a second or two before the car responds, and you'll overshoot the turn and take out the neighbor's shrubs.

Hosted Virtual Desktops are a bit like driving in the snow. Every link in the chain between the data on a hard drive in the datacenter and the pixels on the user's screen introduces a delay that the user perceives as lag, and the laws of physics apply. Too much lag or too much snow and it's hard to get anywhere, as citizens of Anchorage, Alaska after this years' record snowfalls, or anyone trying to use a hosted virtual desktop half a world away from the server will testify.

NVIDIA Brings Gaming Know-How to HVD
Last week I spent a day with NVIDIA's soft-spoken, enthusiastic CEO, Jensen Huang who put the whole latency issue for VDI into a practical perspective (thanks Jensen). These days, he says, home game consoles run about 100-150 milliseconds from the time a player hits the fire button to the time they see their plasma cannon blast away an opponent on the screen. For comparison, the blink of an eye is 200-400 milliseconds, and the best gamers can react to things they see on screen as fast as 50 milliseconds.

Latency in HVD is a Killer

Read more

ARM Arrives – Calxeda Shows Real Hardware Running Linux

I said last year that this would happen sometime in the first half of this year, but for some reason my colleagues and clients have kept asking me exactly when we would see a real ARM server running a real OS. How about now?

 To copy from Calxeda’s most recent blog post:

“This week, Calxeda is showing a live Calxeda cluster running Ubuntu 12.04 LTS on real EnergyCore hardware at the Ubuntu Developer and Cloud Summit events in Oakland, CA. … This is the real deal; quad-core, w/ 4MB cache, secure management engine, and Calxeda’s fabric all up and running.”

This is a significant milestone for many reasons. It proves that Calxeda can indeed deliver a working server based on its scalable fabric architecture, although having HP signing up as a partner meant that this was essentially a non-issue, but still, proof is good. It also establishes that at least one Linux distribution provider, in this case Ubuntu, is willing to provide a real supported distribution. My guess is that Red Hat and Centos will jump on the bus fairly soon as well.

Most importantly, we can get on with the important work of characterizing real benchmarks on real systems with real OS support. HP’s discovery centers will certainly play a part in this process as well, and I am willing to bet that by the end of the summer we will have some compelling data on whether the ARM server will deliver on its performance and energy efficiency promises. It’s not a slam dunk guaranteed win – Intel has been steadily ratcheting up its energy efficiency, and the latest generation of x86 server from HP, IBM, Dell, and others show promise of much better throughput per watt than their predecessors. Add to that the demonstration of a Xeon-based system by Sea Micro (ironically now owned by AMD) that delivered Xeon CPUs at a 10 W per CPU power overhead, an unheard of efficiency.

Read more