Oracle Delivers On SPARC Promises With New T4 Processors And Systems

Background – Promises And Potential

Last year I wrote about Oracle’s new plans for SPARC, anchored by a new line of SPARC CPUs engineered in conjunction with Fujitsu (Does SPARC have a Future?), and commented that the first deliveries of this new technology would probably be in early 2012, and until we saw this tangible evidence of Oracle’s actual execution of this road map we could not predict with any confidence the future viability of SPARC.

The T4 CPU

Fast forward a year and Oracle has delivered the first of the new CPUs, ahead of schedule and with impressive gains in performance that make it look like SPARC will remain a viable platform for years. Specifically, Oracle has introduced the T4 CPU and systems based on them. The T4, an evolution of Oracle’s highly threaded T-Series architecture, is implemented with an entirely new core that will form the basis, with variations in number of threads versus cores and cache designs, of the future M and T series systems. The M series will have fewer threads and more performance per thread, while the T CPUs will, like their predecessors, emphasize throughput for highly threaded workloads. The new T4 will have 8 cores, and each core will have 8 threads. While the T4 emphasizes highly threaded workload performance, it is important to note that Oracles has radically improved single-thread performance over its predecessors, with Oracle claiming performance per thread improvements of 5X over its predecessors, greatly improving its utility as a CPU to power less thread-intensive workloads as well.

The SPARC SuperCluster

Read more

Intel Developer Forum (IDF) - Cloud. And Cloud, Cloud, Cloud. Oh, Yes, Did I Mention “Cloud”?

I just attended IDF and I’ve got to say, Intel has certainly gotten the cloud message. Almost everything is centered on clouds, from the high-concept keynotes to the presentations on low-level infrastructure, although if you dug deep enough there was content for general old-fashioned data center and I&O professionals. Some highlights:

Chips and processors and low-level hardware

Intel is, after all, a semiconductor foundry, and despite their expertise in design, their true core competitive advantage is their foundry operations – even their competitors grudgingly acknowledge that they can manufacture semiconductors better than anyone else on the planet. As a consequence, showing off new designs and processes is always front and center at IDF, and this year was no exception. Last year it was Sandy Bridge, the 22nm shrink of the 32nm Westmere (although Sandy Bridge also incorporated some significant design improvements). This year it was Ivy Bridge, the 22nm “tick” of the Intel “tick-tock” design cycle. Ivy Bridge is the new 22nm architecture and seems to have inherited Intel’s recent focus on power efficiency, with major improvements beyond the already solid advantages of their 22nm process, including deeper P-States and the ability to actually shut down parts of the chip when it is idle. While they did not discuss the server variants in any detail, the desktop versions will get an entirely new integrated graphics processor which they are obviously hoping will blunt AMD’s resurgence in client systems. On the server side, if I were to guess, I would guess more cores and larger caches, along with increased support for virtualization of I/O beyond what they currently have.

Read more