Nebula Is A Quantum Leap In Cloud Computing Industrialization (2/2)

The Nebula appliance announced today jumps right into this space and provides a standardized hardware configuration for OpenStack implementations. It offers scaled-out compute power based on commoditized x86 CPUs and standardizes a configuration of switches and other components to glue a large number of these CPUs together. The new VC-backed startup will thus compete head to head with EMC’s Vblock and Microsoft’s Azure appliance; neither of these are based on open source, and the latter isn’t really on the market yet.

But Nebula is more than just a hardware deliverable. Its mission is to transparently standardize the cloud hardware stack. Basically, it’s nothing more than the complex specification Microsoft worked out with its hardware partners (Dell, Fujitsu, and HP) to deliver the Azure appliance to local cloud providers and large-scale private clouds. However, Nebula’s openness is the differentiator; it reminds me a bit of IBM’s approach around the original personal computer back in the 1970s. Sure, it enabled hardware competitors to produce compatible PCs — but it also brought mass adoption of the PC, outperforming Apple over four decades.

 

If Nebula delivers a compelling price point, it has an appealing approach that could gain significant share in the growing cloud hardware market. If the new company aims to spur a revolution similar to that of the PC, its founders need to tweak their strategy soon:

 

Read more

Recent Benchmarks Reinforce Scalability Of x86 Servers

Over the past months server vendors have been announcing benchmark results for systems incorporating Intel’s high-end x86 CPU, the E7, with HP trumping all existing benchmarks with their recently announced numbers (although, as noted in x86 Servers Hit The High Notes, the results are clustered within a few percent each other). HP recently announced new performance numbers for their ProLiant DL980, their high-end 8-socket x86 server using the newest Intel E7 processors. With up to 10 cores, these new processors can bring up to 80 cores to bear on large problems such as database, ERP and other enterprise applications.

The performance results on the SAP SD 2-Tier benchmark, for example, at 25160 SD users, show a performance improvement of 35% over the previous high-water mark of 18635. The results seem to scale almost exactly with the product of core count x clock speed, indicating that both the system hardware and the supporting OS, in this case Windows Server 2008, are not at their scalability limits. This gives us confidence that subsequent spins of the CPU will in turn yield further performance increases before hitting system of OS limitations. Results from other benchmarks show similar patterns as well.

Key takeaways for I&O professionals include:

  • Expect to see at least 25% to 35% throughput improvements in many workloads with systems based on the latest the high-performance PCUs from Intel. In situations where data center space and cooling resources are constrained this can be a significant boost for a same-footprint upgrade of a high-end system.
  • For Unix to Linux migrations, target platform scalability continues become less of an issue.

The New CIO — Embrace The Empowered Era Or Step Aside

 

Today, 22% of employees say that they have used a non-IT-provisioned service over the Web to perform their job function —not to update their Facebook accounts, but to do real work.[i] Many employees are no longer relying on IT to provision, manage, and run their technology because they feel IT is too slow and puts unnecessary restrictions on their use of technology. Many customers expect on-demand information, customized user experiences, and mobile apps that IT is expected to deliver quickly, cheaply, and reliably. Some CIOs have reacted to this shift by vigorously defending their turf from these encroachments. Others have ceded control to third-party service providers and business managers who now make their own technology decisions.

Read more

First Sign Of A Cloud Bubble Ready To Pop - An ETF

On July 5th, First Trust launched an exchange traded fund (ETF) designed to help investors capitalize on the growing market for cloud computing. I'd be excited about this sign of maturity for the market if the fund let you invest in the companies that are truly driving cloud computing, but most of them aren't publicly traded. Now don't get me wrong, there are clearly some cloud leaders in the ISE Cloud Index, such as Amazon, saleforce.com and Netflix, but many of the stocks in this fund are traditional infrastructure players who get a fraction (at most) of their revenues from cloud computing, such as Polycom, Teradata and Iron Mountain. The fund is a mix of cloud leaders, arms dealers and companies who are directionally heading toward the cloud - dare I say "cloudwashing" their traditional revenue streams. 

The bigger question, though, is should anyone invest in this fund? Ignore the name and why not. Many of these stocks are market leaders in their respective areas, so if you are looking for a good technology fund, this is probably as good as any. 

Read more

Categories:

The Cloud Computing Market Grows Up

Mark this date. While it isn't an anniversary of anything significant in the past, it is a day where our beloved cloud computing market showed significant signs of maturing. Major announcements by VMware, Citrix, and Microsoft all signaled significant progress in making cloud platforms (infrastructure-as-a-service [IaaS] and platform-as-a-service [PaaS]) more enterprise ready and consumable by I&O professionals.

* VMware updates its cloud stack. The server virtualization leader announced version 5 of its venerable hypervisor and version 1.5 of vCloud Director, its IaaS platform atop vSphere. Key enhancements to vCloud include more hardening of its security and resource allocation policy capabilities that address secure multitenancy concerns and elimination of the "noisy neighbor" problem, respectively. It also doubled the total capacity of VMs service providers can put in a single cloud to 20,000. VMware also resurrected a key feature from its now defunct Lab Manager — linked clones. This key capability for driving operational efficiency lets you deploy new VMs from the image library and the system will maintain the relationship between the golden image and the deployed VM. This does two things; it minimizes the storage footprint of the VM, much as similar technology does in virtual desktops, and second it uses the link to ensure clones maintain the patch level and integrity of the golden master. This alone is reason enough to consider vCloud Director.

Read more

Categories:

VMware Pushes Hypervisor And Management Features With vSphere 5 Announcement

After considerable speculation and anticipation, VMware has finally announced vSphere 5 as part of a major cloud infrastructure launch, including vCloud Director 1.5, SRM 5 and vShield 5. From our first impressions, it is both well worth the wait and merits immediate serious consideration as an enterprise virtualization platform, particularly for existing VMware customers.

The list of features is voluminous, with at least 100 improvements, large and small, but among the features, several stand out as particularly significant as I&O professionals continue their efforts to virtualize the data center, primarily dealing with and support for both larger VMs and physical host systems, and also with the improved manageability of storage and improvements Site Recovery Manager (SRM), the remote-site HA components:

  • Replication improvements for Site Recovery Manager, allowing replication without SANs
  • Distributed Resource Scheduling (DRS) for Storage
  • Support for up to 1 TB of memory per VM
  • Support for 32 vCPUs per VM
  • Support for up to 160 Logical CPUs and 2 TB or RAM
  • New GUI to configure multicore vCPUs
  • Storage driven storage delivery based on the VMware-Aware Storage APIs
  • Improved version of the Cluster File System, VMFS5
  • Storage APIs – Array Integration: Thin Provisioning enabling reclaiming blocks of a thin provisioned LUN on the array when a virtual disk is deleted
  • Swap to SSD
  • 2TB+ LUN support
  • Storage vMotion snapshot support
  • vNetwork Distributed Switch improvements providing improved visibility in VM traffic
  • vCenter Server Appliance
  • vCenter Solutions Manager, providing a consistent interface to configure and monitor vCenter-integrated solutions developed by VMware and third parties
  • Revamped VMware High Availability (HA) with Fault Domain Manager
Read more

Intel Steps On The Accelerator, Reveals Many Independent Core Road Map

While NVIDIA and to a lesser extent AMD (via its ATI branded product line) have effectively monopolized the rapidly growing and hyperbole-generating market for GPGPUs, highly parallel application accelerators, Intel has teased the industry for several years, starting with its 80-core Polaris Research Processor demonstration in 2008. Intel’s strategy was pretty transparent – it had nothing in this space, and needed to serve notice that it was actively pursuing it without showing its hand prematurely. This situation of deliberate ambiguity came to an end last month when Intel finally disclosed more details on its line of Many Independent Core (MIC) accelerators.

Intel’s approach to attached parallel processing is radically different than its competitors and appears to make excellent use of its core IP assets – fabrication and expertise and the x86 instruction set. While competing products from NVIDIA and AMD are based on graphics processing architectures, employing 100s of parallel non-x86 cores, Intel’s products will feature a smaller (32 – 64 in the disclosed products) number of simplified x86 cores on the theory that developers will be able to harvest large portions of code that already runs on 4 – 10 core x86 CPUs and easily port them to these new parallel engines.

Read more