The Empire Strikes Back – Intel Reveals An Effective Low-Power And Micro Server Strategy

A lot has been written about potential threats to Intel’s low-power server hegemony, including discussions of threats from not only its perennial minority rival AMD but also from emerging non-x86 technologies such as ARM servers. While these are real threats, with potential for disrupting Intel’s position in the low power and small form factor server segment if left unanswered, Intel’s management has not been asleep at the wheel. As part of the rollout of the new Sandy Bridge architecture, Intel recently disclosed their platform strategy for what they are defining as “Micro Servers,” small single-socket servers with shared power and cooling to improve density beyond the generally accepted dividing line of one server per RU that separates “standard density” from “high density.” While I think that Intel’s definition is a bit myopic, mostly serving to attach a label to a well established category, it is a useful tool for segmenting low-end servers and talking about the relevant workloads.

Intel’s strategy revolves around introducing successive generations of its Sandy Bridge and future architectures embodied as Low Power (LP) and Ultra Low Power (ULP) products with promises of up to 2.2X performance per watt and 30% less actual power compared to previous generation equivalent x86 servers, as outlined in the following chart from Intel:

So what does this mean for Infrastructure & Operations professionals interested in serving the target loads for micro servers, such as:

  • Basic content delivery and web servers
  • Low-end dedicated server hosting
  • Email and basic SaaS delivery
Read more

Facebook Opens New Data Center – And Shares Its Technology

A Peek Behind The Wizard's Curtain

The world of hyper scale web properties has been shrouded in secrecy, with major players like Google and Amazon releasing only tantalizing dribbles of information about their infrastructure architecture and facilities, on the presumption that this information represented critical competitive IP. In one bold gesture, Facebook, which has certainly catapulted itself into the ranks of top-tier sites, has reversed that trend by simultaneously disclosing a wealth of information about the design of its new data center in rural Oregon and contributing much of the IP involving racks, servers, and power architecture to an open forum in the hopes of generating an ecosystem of suppliers to provide future equipment to themselves and other growing web companies.

The Data Center

By approaching the design of the data center as an integrated combination of servers for known workloads and the facilities themselves, Facebook has broken some new ground in data center architecture with its facility.

At a high level, a traditional enterprise DC has a utility transformer that feeds power to a centralized UPS, and then power is subsequently distributed through multiple levels of PDUs to the equipment racks. This is a reliable and flexible architecture, and one that has proven its worth in generations of commercial data centers. Unfortunately, in exchange for this flexibility and protection, it extracts a penalty of 6% to 7% of power even before it reaches the IT equipment.

Read more

Intel Ups The Ante At The High End With New E7 CPUs

Bigger, Better, Faster Xeon CPUs

Intel today publicly announced its anticipated “Westmere EX” high end Westmere architecture server CPU as the E7, now part of a new family nomenclature encompassing entry (E3), midrange (E5), and high-end server CPUs (E7), and at first glance it certainly looks like it delivers on the promise of the Westmere architecture with enhancements that will appeal to buyers of high-end x86 systems.

The E7 in a nutshell:

  • 32 nm CPU with up to 10 cores, each with hyper threading, for up to 20 threads per socket.
  •  Intel claims that the system-level performance will be up to 40% higher than the prior generation 8-core Nehalem EX. Notice that the per-core performance improvement is modest (although Intel does offer a SKU with 8 cores and a slightly higher clock rate for those desiring ultimate performance per thread).
  • Improvements in security with Intel Advanced Encryption Standard New Instruction (AES-NI) and Intel Trusted Execution Technology (Intel TXT).
  • Major improvements in power management by incorporating the power management capabilities from the Xeon 5600 CPUs, which include more aggressive P states, improved idle power operation, and the ability to separately reduce individual core power setting depending on workload, although to what extent this is supported on systems that do not incorporate Intel’s Node Manager software is not clear.
Read more