My Three Takeaways From Intel CMO’s Keynote At Forrester Marketing Forum

At Forrester’s recent Marketing Forum in San Francisco, it was my pleasure to introduce Deborah Conrad, Intel VP and CMO, ahead of her keynote. Deborah shared her experiences about transforming the 20-year-old PC-oriented Intel “Inside” brand into the Intel “Every-Ware” brand, which is relevant in a world with a proliferation of devices and consumers of technology.

As I listened to her keynote before joining her back onstage for Q/A, she shared many great examples, stories, and lessons. However, three important insights left a lasting impression in my mind and are relevant for all technology marketers, regardless of company size, technology category, or marketing budget.

1. It’s about the experience. Intel realized that it was no longer about what the chip does but about the experience it creates for the user. This is an important lesson for all technology marketers, who, as a collective industry, have historically marketed technology innovation or the latest and greatest features and functions, not the experience generated by the technology or solution. We can borrow a page from our colleagues in B2C marketing — such as BMW marketing “The Ultimate Driving Machine” and the experience associated with it, not marketing horsepower, torque, and braking distances.

Read more

HP And Oracle Customers React – Not Happy, But Coping

Since Oracle dropped their bombshell on HP and Itanium, I have fielded multiple emails and about a dozen inquiries from HP and Oracle customers wanting to discuss their options and plans. So far, there has been no general sense of panic, and the scenarios seem to be falling into several buckets:

  • The majority of Oracle DB/HP customers are not at the latest revision of Oracle, so they have a window within which to make any decisions, bounded on the high end by the time it will take them to make a required upgrade of their application plus DB stack past the current 11.2 supported Itanium release. For those customers still on Oracle release 9, this can be many years, while for those currently on 11.2, the next upgrade cycle will cause a dislocation. The most common application that has come up in inquiries is SAP, with Oracle’s own apps second.
  • Customers with other Oracle software, such as Hyperion, Peoplesoft, Oracle’s eBusiness Suite, etc., and other ISV software are often facing complicated constraints on their upgrades. In some cases decisions by the ISVs will drive the users toward upgrades they do not want to make. Several clients told me they will defer ISV upgrades to avoid being pushed into an unsupported version of the DB.
Read more

Egenera Lands HP As A Partner – A Win For Both

Egenera, arguably THE pioneer in what the industry is now calling converged infrastructure, has had a hard life. Early to market in 2000 with a solution that was approximately a decade ahead of its time, it offered an elegant abstraction of physical servers into what chief architect Maxim Smith described as “fungible and anonymous” resources connected by software defined virtual networks. Its interface was easy to use, allowing the definition of virtualized networks, NICs, servers with optional failover and pools of spare resources with a fluidity that has taken the rest of the industry almost 10 years to catch up to. Unfortunately this elegant presentation was chained to a completely proprietary hardware architecture, which encumbered the economics of x86 servers with an obsolete network fabric, expensive system controller and physical architecture (but it was the first vendor to include blue lights on its servers). The power of the PanManager software was enough to keep the company alive, but not enough to overcome the economics of the solution and put them on a fast revenue path, especially as emerging competitors began to offer partial equivalents at lower costs. The company is privately held and does not disclose revenues, but Forrester estimates it is still less than $100 M in annual revenues.

In approximately 2006, Egenera began the process of converting its product to a pure software offering capable of running on commodity server hardware and standard Ethernet switches. In subsequent years they have announced distribution arrangements with Fujitsu (an existing partner for their earlier products) and an OEM partnership with Dell, which apparently was not successful, since Dell subsequently purchased Scalent, an emerging software competitor. Despite this, Egenera claims that its software business is growing and has been a factor in the company’s first full year of profitability.

Read more

The Empire Strikes Back – Intel Reveals An Effective Low-Power And Micro Server Strategy

A lot has been written about potential threats to Intel’s low-power server hegemony, including discussions of threats from not only its perennial minority rival AMD but also from emerging non-x86 technologies such as ARM servers. While these are real threats, with potential for disrupting Intel’s position in the low power and small form factor server segment if left unanswered, Intel’s management has not been asleep at the wheel. As part of the rollout of the new Sandy Bridge architecture, Intel recently disclosed their platform strategy for what they are defining as “Micro Servers,” small single-socket servers with shared power and cooling to improve density beyond the generally accepted dividing line of one server per RU that separates “standard density” from “high density.” While I think that Intel’s definition is a bit myopic, mostly serving to attach a label to a well established category, it is a useful tool for segmenting low-end servers and talking about the relevant workloads.

Intel’s strategy revolves around introducing successive generations of its Sandy Bridge and future architectures embodied as Low Power (LP) and Ultra Low Power (ULP) products with promises of up to 2.2X performance per watt and 30% less actual power compared to previous generation equivalent x86 servers, as outlined in the following chart from Intel:

So what does this mean for Infrastructure & Operations professionals interested in serving the target loads for micro servers, such as:

  • Basic content delivery and web servers
  • Low-end dedicated server hosting
  • Email and basic SaaS delivery
Read more

Facebook Opens New Data Center – And Shares Its Technology

A Peek Behind The Wizard's Curtain

The world of hyper scale web properties has been shrouded in secrecy, with major players like Google and Amazon releasing only tantalizing dribbles of information about their infrastructure architecture and facilities, on the presumption that this information represented critical competitive IP. In one bold gesture, Facebook, which has certainly catapulted itself into the ranks of top-tier sites, has reversed that trend by simultaneously disclosing a wealth of information about the design of its new data center in rural Oregon and contributing much of the IP involving racks, servers, and power architecture to an open forum in the hopes of generating an ecosystem of suppliers to provide future equipment to themselves and other growing web companies.

The Data Center

By approaching the design of the data center as an integrated combination of servers for known workloads and the facilities themselves, Facebook has broken some new ground in data center architecture with its facility.

At a high level, a traditional enterprise DC has a utility transformer that feeds power to a centralized UPS, and then power is subsequently distributed through multiple levels of PDUs to the equipment racks. This is a reliable and flexible architecture, and one that has proven its worth in generations of commercial data centers. Unfortunately, in exchange for this flexibility and protection, it extracts a penalty of 6% to 7% of power even before it reaches the IT equipment.

Read more

Intel Ups The Ante At The High End With New E7 CPUs

Bigger, Better, Faster Xeon CPUs

Intel today publicly announced its anticipated “Westmere EX” high end Westmere architecture server CPU as the E7, now part of a new family nomenclature encompassing entry (E3), midrange (E5), and high-end server CPUs (E7), and at first glance it certainly looks like it delivers on the promise of the Westmere architecture with enhancements that will appeal to buyers of high-end x86 systems.

The E7 in a nutshell:

  • 32 nm CPU with up to 10 cores, each with hyper threading, for up to 20 threads per socket.
  •  Intel claims that the system-level performance will be up to 40% higher than the prior generation 8-core Nehalem EX. Notice that the per-core performance improvement is modest (although Intel does offer a SKU with 8 cores and a slightly higher clock rate for those desiring ultimate performance per thread).
  • Improvements in security with Intel Advanced Encryption Standard New Instruction (AES-NI) and Intel Trusted Execution Technology (Intel TXT).
  • Major improvements in power management by incorporating the power management capabilities from the Xeon 5600 CPUs, which include more aggressive P states, improved idle power operation, and the ability to separately reduce individual core power setting depending on workload, although to what extent this is supported on systems that do not incorporate Intel’s Node Manager software is not clear.
Read more