Windows Server 2003 – A Very Unglamorous but Really Important Problem, Waiting to Bite

Very much in the shadows of all the press coverage and hysteria attendant on emerging cloud architectures and customer-facing systems of engagement are the nitty-gritty operational details that lurk like monsters in the swamp of legacy infrastructure, and some of them have teeth. And sometimes these teeth can really take a bite out of the posterior of an unprepared organization.

One of those toothy animals that I&O groups are increasingly encountering in their landscapes is the problem of what to do with Windows Server 2003 (WS2003). It turns out there are still approximately 9 million WS2003 systems running today, with another 2+ million instances running as VM guests. Overall, around 11 million OS images and a ton of hardware that will need replacing and upgrading. And increasing numbers of organizations have finally begun to take seriously the fact that Microsoft is really going to end support and updates as of July 2015.

Based on the conversations I have been having with our clients, the typical I&O group that is now scrambling to come up with a plan has not been willfully negligent, nor are they stupid. Usually WS2003 servers are legacy servers, quietly running some mature piece of code, often in satellite locations or in the shops of acquired companies. The workloads are a mix of ISV and bespoke code, but it is often a LOB-specific application, with the run-of-the-mill collaboration, infrastructure servers and, etc. having long since migrated to newer platforms. A surprising number of clients have told me that they have identified the servers, but not always the applications or the business owners – often a complex task for an old resource in a large company.

So what are the options and best practices for organizations facing the W2003K “monster”? Conversations with clients and vendors providing migration assistance point to several good practices and options:

Read more

Taking Stock of Linux – Maturation Continues

[Apologies to all who have just read this post with a sense of deja-vue. I saw a typo, corrected it and then republished the blog, and it reset the publication date. This post was originally published several months ago.]

Having been away from the Linux scene for a while, I recently took a look at a newer version of Linux, SUSE Enterprise Linux Version 11.3, which is representative of the latest feature sets from the Linux 3.0 et seq kernel available to the entre Linux community, including SUSE, Red Hat, Canonical and others. It is apparent, both from the details on SUSE 11.3 and from perusing the documentation on other distribution providers, that Linux has continued to mature nicely as both a foundation for large scale-out clouds as well as a strong contender for the kind of enterprise workloads that previously were only comfortable on either RISC/UNIX systems or large Microsoft Server systems. In effect, Linux has continued its maturation to the point where its feature set and scalability begin to look like a top-tier UNIX from only a couple of years ago.

Among the enterprise technology that caught my eye:

  • Scalability – The Linux kernel now scales to 4096 x86 CPUs and up to 16 TB of memory, well into high-end UNIX server territory, and will support the largest x86 servers currently shipping.
  • I/O – The Linux kernel now includes btrfs (a geeky contraction of “Better File System), an open source file system that promises much of the scalability and feature set of Oracle’s popular ZFS file system including checksums, CoW, snapshotting, advanced logical volume management including thin provisioning and others. The latest releases also include advanced features like geoclustering and remote data replication to support advanced HA topologies.
Read more

From Intel Developer Forum – New Xeon E5 v3 Promises A Respite For Capacity Planners

I'm at IDF, a major geekfest for the people interested in the guts of today’s computing infrastructure, and will be immersing myself in the flow for a couple of days. Before going completely off the deep end, I wanted to call out the announcement of the new Xeon E5. While I’ve discussed it in more depth in an accompanying Quick Take just published on our main website, I wanted to add some additional comments on its implications for data center operations, particularly in the areas of capacity planning and long-term capital budgeting.

For many years, each successive iteration of Intel’s and partners’ roadmaps has been quietly delivering a major benefit that seldom gets top billing – additional capacity within the same power and physical footprint, and the resulting ability for users from small enterprises to mega-scale service providers, to defer additional data spending capital expense.

Read more

VMworld – Reflections on a Transformational Event

A group of us just published an analysis of VMworld (Breaking Down VMworld), and I thought I’d take this opportunity to add some additional color to the analysis. The report is an excellent synthesis of our analysis, the work of a talented team of collaborators with my two cents thrown in as well, but I wanted to emphasize a few additional impressions, primarily around storage, converged infrastructure, and the  overall tone of the show.

First, storage. If they ever need a new name for the show, they might consider “StorageWorld” – it seemed to me that just about every other booth on the show floor was about storage. Cloud storage, flash storage, hybrid storage, cheap storage, smart storage, object storage … you get the picture.[i] Reading about the hyper-growth of storage and the criticality of storage management to the overall operation of a virtualized environment does not drive the concept home in quite the same way as seeing 1000s of show attendees thronging the booths of the storage vendors, large and small, for days on end. Another leading indicator, IMHO, was the “edge of the show” booths, the cheaper booths on the edge of the floor, where smaller startups congregate, which was also well populated with new and small storage vendors – there is certainly no shortage of ambition and vision in the storage technology pipeline for the next few years.

Read more

Extremes of x86 Servers Illustrate the Depth of the Ecosystem and the Diversity of Workloads

I’ve recently been thinking a lot about application-specific workloads and architectures (Optimize Scalalable Workload-Specific Infrastructure for Customer Experiences), and it got me to thinking about the extremes of the server spectrum – the very small and the very large as they apply to x86 servers. The range, and the variation in intended workloads is pretty spectacular as we diverge from the mean, which for the enterprise means a 2-socket Xeon server, usually in 1U or 2U form factors.

At the bottom, we find really tiny embedded servers, some with very non-traditional packaging. My favorite is probably the technology from Arnouse digital technology, a small boutique that produces computers primarily for military and industrial ruggedized environments.

Slightly bigger than a credit card, their BioDigital server is a rugged embedded server with up to 8 GB of RAM and 128 GB SSD and a very low power footprint. Based on an Atom-class CPU, thus is clearly not the choice for most workloads, but it is an exemplar of what happens when the workload is in a hostile environment and the computer maybe needs to be part of a man-carried or vehicle-mounted portable tactical or field system. While its creators are testing the waters for acceptance as a compute cluster with up to 4000 of them mounted in a standard rack, it’s likely that these will remain a niche product for applications requiring the intersection of small size, extreme ruggedness and complete x86 compatibility, which includes a wide range of applications from military to portable desktop modules.

Read more