BI In The Cloud: Separating Facts From Fiction

“… and they lived happily ever after.” This is the typical ending of most Hollywood movies, which is why I am not a big fan. I much prefer European or independent movies that leave it up to the viewer to draw their own conclusions. It’s just so much more realistic. Keep this in mind, please, as you read this blog, because its only purpose is to present my point of view on what’s happening in the cloud BI market, not to predict where it’s going. I’ll leave that up to your comments — just like your own thoughts and feelings after a good, thoughtful European or indie movie.

Market definition

First of all, let’s define the market. Unfortunately, the terms SaaS and cloud are often used synonymously and therefore, alas, incorrectly.

  • SaaS is just a licensing structure. Many vendors (open source, for example) offer SaaS software subscription models, which has nothing to do with cloud-based hosting.
  • Cloud, in my humble opinion, is all about multitenant software hosted on public or private clouds. It’s not about cloud hosting of traditional software innately architected for single tenancy.
Read more

Oracle Leapfrogs BI Competitors By Acquiring Endeca

This is a very smart move by Oracle. Until the Siebel and Hyperion acquisitions, Oracle was not a leader in the BI and analytics space. Those acquisitions put them squarely in the top three together with IBM and SAP. However, until this morning, Oracle played mostly in the traditional BI space: reporting, querying, and analytics based on relational databases. But these mainstream relational databases are an awkward fit for BI. You can use them, but it requires lots of tuning and customization and constant optimization — which is difficult, time-consuming, and costly. Unfortunately, row-based RDBMSes like IBM DB2, Microsoft SQL Server, Oracle, and Sybase ASE were originally designed and architected for transaction processing, not reporting and analysis. In order to tune such a RDBMS for BI usage, specifically data warehousing, architects usually:

  • Denormalize data models to optimize reporting and analysis.
  • Build indexes to optimize queries.
  • Build aggregate tables to optimize summary queries.
  • Build OLAP cubes to further optimize analytic queries.
Read more

How Do You Sell BI To The Business Executives?

Whoa! Hold your horses. If this is indeed a key challenge that you’ve tried to address in the past without much success, consider switching jobs. This is not a joke. Business intelligence (BI) is an employee market right now; a key challenge for most BI employers is finding, recruiting, and retaining top — or actually any, for that matter — BI talent. Consider that IBM BAO alone added more than 4,000 (!) BI positions in just over a year! Every other major, midsize, and boutique BI consultancy I talk to is struggling to find BI resources. So if you’ve been fighting this uphill Sisyphean battle for a while, consider new channels for your noble efforts.

Now, some more practical advice — albeit not as exciting. Start from the top down. In a few minutes I am getting ready to talk to yet another large client whose CEO does not “get” BI. Can you rightfully blame him/her? Yes and no. Yes, because how can you manage any business without measurement and insight into your internal and external processes? So if your CEO didn’t learn that in his/her MBA 101, suggest that he/she look for another job. And if you’re still standing after that and have suffered only a mild concussion, consider that many BI projects have been less than successful, and ROI on BI — one of the most expensive enterprise apps — is extremely difficult to show. So can you really blame your CEO?

Read more