DCIM And The New Reality Of Infrastructure & Operations

I recently published an update on power and cooling in the data center (http://www.forrester.com/go?docid=60817), and as I review it online, I am struck by the combination of old and new. The old – the evolution of semiconductor technology, the increasingly elegant attempts to design systems and components that can be incrementally throttled, and the increasingly sophisticated construction of the actual data centers themselves, with increasing modularity and physical efficiency of power and cooling.

The new is the incredible momentum I see behind Data Center Infrastructure Management software. In a few short years, DCIM solutions have gone from simple aggregated viewing dashboards to complex software that understands tens of thousands of components, collects, filters and analyzes data from thousands of sensors in a data center (a single CRAC may have in excess of 20 sensors, a server over a dozen, etc.) and understands the relationships between components well enough to proactively raise alarms, model potential workload placement and make recommendations about prospective changes.

Of all the technologies reviewed in the document, DCIM offers one of the highest potentials for improving overall efficiency without sacrificing reliability or scalability of the enterprise data center. While the various DCIM suppliers are still experimenting with business models, I think that it is almost essential for any data center operations group that expects significant change, be it growth, shrinkage, migration or a major consolidation or cloud project, to invest in DCIM software. DCIM consumers can expect to see major competitive action among the current suppliers, and there is a strong potential for additional consolidation.

Oracle Delivers On SPARC Promises With New T4 Processors And Systems

Background – Promises And Potential

Last year I wrote about Oracle’s new plans for SPARC, anchored by a new line of SPARC CPUs engineered in conjunction with Fujitsu (Does SPARC have a Future?), and commented that the first deliveries of this new technology would probably be in early 2012, and until we saw this tangible evidence of Oracle’s actual execution of this road map we could not predict with any confidence the future viability of SPARC.

The T4 CPU

Fast forward a year and Oracle has delivered the first of the new CPUs, ahead of schedule and with impressive gains in performance that make it look like SPARC will remain a viable platform for years. Specifically, Oracle has introduced the T4 CPU and systems based on them. The T4, an evolution of Oracle’s highly threaded T-Series architecture, is implemented with an entirely new core that will form the basis, with variations in number of threads versus cores and cache designs, of the future M and T series systems. The M series will have fewer threads and more performance per thread, while the T CPUs will, like their predecessors, emphasize throughput for highly threaded workloads. The new T4 will have 8 cores, and each core will have 8 threads. While the T4 emphasizes highly threaded workload performance, it is important to note that Oracles has radically improved single-thread performance over its predecessors, with Oracle claiming performance per thread improvements of 5X over its predecessors, greatly improving its utility as a CPU to power less thread-intensive workloads as well.

The SPARC SuperCluster

Read more

Intel Developer Forum (IDF) - Cloud. And Cloud, Cloud, Cloud. Oh, Yes, Did I Mention “Cloud”?

I just attended IDF and I’ve got to say, Intel has certainly gotten the cloud message. Almost everything is centered on clouds, from the high-concept keynotes to the presentations on low-level infrastructure, although if you dug deep enough there was content for general old-fashioned data center and I&O professionals. Some highlights:

Chips and processors and low-level hardware

Intel is, after all, a semiconductor foundry, and despite their expertise in design, their true core competitive advantage is their foundry operations – even their competitors grudgingly acknowledge that they can manufacture semiconductors better than anyone else on the planet. As a consequence, showing off new designs and processes is always front and center at IDF, and this year was no exception. Last year it was Sandy Bridge, the 22nm shrink of the 32nm Westmere (although Sandy Bridge also incorporated some significant design improvements). This year it was Ivy Bridge, the 22nm “tick” of the Intel “tick-tock” design cycle. Ivy Bridge is the new 22nm architecture and seems to have inherited Intel’s recent focus on power efficiency, with major improvements beyond the already solid advantages of their 22nm process, including deeper P-States and the ability to actually shut down parts of the chip when it is idle. While they did not discuss the server variants in any detail, the desktop versions will get an entirely new integrated graphics processor which they are obviously hoping will blunt AMD’s resurgence in client systems. On the server side, if I were to guess, I would guess more cores and larger caches, along with increased support for virtualization of I/O beyond what they currently have.

Read more

An Early Look at Windows Server 8 – Can You Say Cloud?

Well, maybe everybody is saying “cloud” these days, but my first impression of Microsoft Windows Server 8 (not the final name) is that Microsoft has been listening very closely to what customers want from an OS that can support both public and private enterprise cloud implementations. And most importantly, the things that they have built into WS8 for “clouds” also look like they make life easier for plain old enterprise IT.

Microsoft appears to have focused its efforts on several key themes, all of which benefit legacy IT architectures as well as emerging clouds:

  • Management, migration and recovery of VMs in a multi-system domain – Major improvements in Hyper-V and management capabilities mean that I&O groups can easily build multi-system clusters of WS8 servers, and easily migrate VMs across system boundaries. Muplitle systems can be clustered with Fibre Channel, making it easier to implement high-performance clusters.
  • Multi-tenancy – A host of features, primarily around management and role-based delegation that make it easier and more secure to implement multi-tenant VM clouds.
  • Recovery and resiliency – Microsoft claims that they can failover VMs from one machine to another in 25 seconds, a very impressive number indeed. While vendor performance claims are always like EPA mileage – you are guaranteed never to exceed this number – this is an impressive claim and a major capability, with major implications for HA architecture in any data center.
Read more

Xsigo Expands to a Data Center Fabric: Converged Infrastructure for the Virtual Data Center

Last year at VMworld I noted Xsigo Systems, a small privately held company at VMworld showing their I/O Director technology, which delivereda subset of HP Virtual Connect or Cisco UCS I/O virtualization capability in a fashion that could be consumed by legacy rack-mount servers from any vendor. I/O Director connects to the server with one or more 10 G Ethernet links, and then splits traffic out into enterprise Ethernet and FC networks. On the server side, the applications, including VMware, see multiple virtual NICs and HBAs courtesy of Xsigo’s proprietary virtual NIC driver.

Controlled via Xsigo’s management console, the server MAC and WWNs can be programmed, and the servers can now connect to multiple external networks with fewer cables and substantially lower costs for NIC and HBA hardware. Virtualized I/O is one of the major transformative developments in emerging data center architecture, and will remain a theme in Forrester’s data center research coverage.

This year at VMworld, Xsigo announced a major expansion of their capabilities – Xsigo Server Fabric, which takes the previous rack-scale single-Xsigo switch domains and links them into a data-center-scale fabric. Combined with improvements in the software and UI, Xsigo now claims to offer one-click connection of any server resource to any network or storage resource within the domain of Xsigo’s fabric. Most significantly, Xsigo’s interface is optimized to allow connection of VMs to storage and network resources, and to allow the creation of private VM-VM links.

Read more